Skip to main content

Advertisement

Log in

Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abidi W, Cantín CM, Jiménez S, Giménez R, Moreno MÁ, Gogorcena Y (2015) Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a non-melting peach (Prunus persica (L.) Batsch) progeny. J Sci Food Agric 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Abouelsaad I, Renault S (2018) Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. J Plant Physiol 226:136–144

    Article  PubMed  CAS  Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Hashmi N (2011) Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248:601–612

    Article  PubMed  CAS  Google Scholar 

  • Aghdam MS, Sevillano L, Flores FB, Bodbodak S (2015) The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins. J Agric Sci 153:7–24

    Article  CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate–glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA (2017) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch Agron Soil Sci 63:1889–1899

    Article  CAS  Google Scholar 

  • Ahmadi F, Karimi K, Struik P (2018) Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. South Afr J Bot 115:5–11

    Article  CAS  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8:279–293

    Article  Google Scholar 

  • Alavi-Samani SM, Kachouei MA, Pirbalouti AG (2015) Growth, yield, chemical composition, and antioxidant activity of essential oils from two thyme species under foliar application of jasmonic acid and water deficit conditions. Hortic Environ Biotechnol 56:411–420

    Article  CAS  Google Scholar 

  • Ali E, Hussain N, Shamsi IH, Jabeen Z, Siddiqui MH, Jiang L-x (2018) Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Uni Sci B 19:130–146

    Article  CAS  Google Scholar 

  • Alisofi S, Einali A, Sangtarash MH (2020) Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress. J Hortic Sci Biotechnol 95:247–259

    Article  CAS  Google Scholar 

  • Anjum S, Wang L, Farooq M, Khan I, Xue L (2011) Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci 197:296–301

    Article  CAS  Google Scholar 

  • Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241

    Article  CAS  Google Scholar 

  • Asghari M, Hasanlooe AR (2015) Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content, catalase and peroxidase enzymes activity in “Sabrosa” strawberry fruit during storage. Sci Hortic 197:490–495

    Article  CAS  Google Scholar 

  • Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F (2016) Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. J Plant Physiol 191:101–110

    Article  PubMed  CAS  Google Scholar 

  • Azeem U (2018) Ameliorating nickel stress by jasmonic acid treatment in Zea mays L. Russ Agric Sci 44:209–215

    Article  Google Scholar 

  • Agnihotri A, Seth CS (2020) Does jasmonic acid regulate photosynthesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution?. Chemosphere 243:125361

  • Bali S, Kaur P, Kohli SK, Ohri P, Thukral AK, Bhardwaj R, Ahmad P (2018) Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci Total Environ 645:1344–1360

    Article  PubMed  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  PubMed  CAS  Google Scholar 

  • Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinas SI (2019) Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol 181:1668–1682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bali S, Jamwal VL, Kaur P, Kohli SK, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ahmad P (2019) Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato. Ecotoxicol Environ Saf 174:283–294

    Article  PubMed  CAS  Google Scholar 

  • Brash AR, Baertschi SW, Ingram CD, Harris TM (1988) Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides. Proc Natl Acad Sci 85:3382–3386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breeze E (2019) Master MYCs: MYC2, the jasmonate signaling “master switch”. Am Soc Plant Biol 31:9–10

    CAS  Google Scholar 

  • Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    Article  PubMed  Google Scholar 

  • Castagna A, Ederli L, Pasqualini S, Mensuali-Sodi A, Baldan B, Donnini S, Ranieri A (2007) The tomato ethylene receptor LE-ETR3 (NR) is not involved in mediating ozone sensitivity: causal relationships among ethylene emission, oxidative burst and tissue damage. New Phytol 174:342–356

    Article  PubMed  CAS  Google Scholar 

  • Chen H-J, Fu T-Y, Yang S-L, Hsieh H-L (2018) FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLoS Genet 14:e1007248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Choudhary KK, Agrawal S (2014) Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated ultraviolet-B: Changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. Environ Exp Bot 99:122–132

    Article  CAS  Google Scholar 

  • Cui H, Wei J, Su J, Li C, Ge F (2016) Elevated O3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. Plant Sci 253:243–250

    Article  PubMed  CAS  Google Scholar 

  • De Domenico S, Taurino M, Gallo A, Poltronieri P, Pastor V, Flors V, Santino A (2019) Oxylipin dynamics in Medicago truncatula in response to salt and wounding stresses. Physiol Plant 165:198–208

    Article  PubMed  CAS  Google Scholar 

  • de Ollas C, Arbona V, GóMez-Cadenas A (2015) Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions. Plant Cell Environ 38:2157–2170

    Article  PubMed  CAS  Google Scholar 

  • de Ollas C, Dodd IC (2016) Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol Biol 91:641–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  CAS  Google Scholar 

  • Degu A, Ayenew B, Cramer GR, Fait A (2016) Polyphenolic responses of grapevine berries to light, temperature, oxidative stress, abscisic acid and jasmonic acid show specific developmental-dependent degrees of metabolic resilience to perturbation. Food Chem 212:828–836

    Article  PubMed  CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhakarey R, Raorane ML, Treumann A, Peethambaran PK, Schendel RR, Sahi VP, Hause B, Bunzel M, Henry A, Kohli A (2017) Physiological and proteomic analysis of the rice mutant cpm2 suggests a negative regulatory role of jasmonic acid in drought tolerance. Front Plant Sci 8:1903

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding H, Lai J, Wu Q, Zhang S, Chen L, Dai Y-S, Wang C, Du J, Xiao S, Yang C (2016) Jasmonate complements the function of Arabidopsis lipoxygenase 3 in salinity stress response. Plant Sci 244:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    Article  PubMed  Google Scholar 

  • Dombrecht B, Gang PX, Sprague SJ et al (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic 234:431–444

    Article  CAS  Google Scholar 

  • Ellouzi H, Hamed KB, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PG (2019) Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. J Exp Bot 70:315–327

    Article  PubMed  CAS  Google Scholar 

  • Faghih S, Ghobadi C, Zarei A (2017) Response of strawberry plant cv. ‘Camarosa’to salicylic acid and methyl jasmonate application under salt stress condition. J Plant Growth Regul 36:651–659

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Alaee T, Tavasolee A (2019) Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere 9:69–71

    Article  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Farooq MA, Islam F, Yang C, Nawaz A, Gill RA, Ali B, Song W, Zhou W (2018) Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots. Plant Growth Regul 84:135–148

    Article  CAS  Google Scholar 

  • Fedina I, Nedeva D, Georgieva K, Velitchkova M (2009) Methyl jasmonate counteract Uv-B Stress in barley seedlings. J Agron Crop Sci 195:204–212

    Article  CAS  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM (2019) Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci 10:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ghaffari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M (2020) Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet. Spanish J Agric Res 17:0805

    Article  Google Scholar 

  • Ghasemnezhad M, Javaherdashti M (2008) Effect of methyl jasmonate treatment on antioxidant capacity, internal quality and postharvest life of raspberry fruit. Caspian J Environ Sci 6:73–78

    Google Scholar 

  • Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–476

    Article  PubMed  CAS  Google Scholar 

  • Goossens J, Mertens J, Goossens A (2017) Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 68:1333–1347

    PubMed  CAS  Google Scholar 

  • Grunewald W, Vanholme B, Pauwels L, Plovie E, Inze D, Gheysen G, Goossens A (2009) Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habibi F, Ramezanian A, Rahemi M, Eshghi S, Guillén F, Serrano M, Valero D (2019) Postharvest treatments with γ-aminobutyric acid, methyl jasmonate, or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. J Sci Food Agric 99:6408–6417

    Article  PubMed  CAS  Google Scholar 

  • Hanaka A, Wójcik M, Dresler S, Mroczek-Zdyrska M, Maksymiec W (2016) Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Ecotoxicol Environ Saf 124:480–488

    Article  PubMed  CAS  Google Scholar 

  • Haque ME, Abe F, Mori M, Oyanagi A, Komatsu S, Kawaguchi K (2014) Characterization of a wheat pathogenesis-related protein, TaBWPR-1.2, in seminal roots in response to waterlogging stress. J Plant Physiol 171:602–609

    Article  PubMed  CAS  Google Scholar 

  • Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Moshelion M, Tuskan GA, Keurentjes JJ, Altman A (2019) Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol 37:1217–1235

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Article  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Ann Rev Plant Biol 69:387–415

    Article  CAS  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the INDUCER OF CBF expression-C-repeat binding factor/dre binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Li J, Shang H, Meng X (2015) Effect of methyl jasmonate on the anthocyanin content and antioxidant activity of blueberries during cold storage. J Sci Food Agric 95:337–343

    Article  PubMed  CAS  Google Scholar 

  • Ilyas N, Gull R, Mazhar R, Saeed M, Kanwal S, Shabir S, Bibi F (2017) Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun Soil Sci Plant Anal 48:2715–2723

    CAS  Google Scholar 

  • Jang G, Choi YD (2018) Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid. Plant Signal Behav 13:e1451707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang M, Xu F, Peng M, Huang F, Meng F (2016) Methyl jasmonate regulated diploid and tetraploid black locust (Robinia pseudoacacia L.) tolerance to salt stress. Acta Physiol Plant 38:106

  • Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26:230–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing Y, Lin R (2015) The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol 169:371–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez-Aleman GH, Machado RA, Görls H, Baldwin IT, Boland W (2015) Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. Org Biomol Chem 13:5885–5893

    Article  PubMed  CAS  Google Scholar 

  • Kamal AHM, Komatsu S (2016) Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean. J Proteom 133:33–47

    Article  CAS  Google Scholar 

  • Kamińska M, Tretyn A, Trejgell A (2018) Effect of jasmonic acid on cold-storage of Taraxacum pieninicum encapsulated shoot tips. Plant Cell Tiss Org Cult 135:487–497

    Article  CAS  Google Scholar 

  • Kanna M, Tamaoki M, Kubo A, Nakajima N, Rakwal R, Agrawal GK, Tamogami S, Ioki M, Ogawa D, Saji H (2003) Isolation of an ozone-sensitive and jasmonate-semi-insensitive Arabidopsis mutant (OJI1). Plant Cell Physiol 44:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Karaman S, Ozturk B, Genc N, Celik S (2013) Effect of preharvest application of methyl jasmonate on fruit quality of plum (Prunus Salicina L. indell cv. “Fortune”) at harvest and during cold storage. J Food Process Preserv 37:1049–1059

    Article  CAS  Google Scholar 

  • Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ (2019) Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci 281:186–205

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    Article  CAS  Google Scholar 

  • Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    Article  PubMed Central  CAS  Google Scholar 

  • Kloth KJ, Busscher-Lange WGL, J, Van Haarst JC, Kruijer W, Bouwmeester HJ, Dicke M, Jongsma MA, (2016) AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J Exp Bot 67:3383–3396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci 108:5891–5896

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ (2020) Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol 62:218–227

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhong R, Palva ET (2017) WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS ONE 12:e0183731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zhang L, Ahammed GJ, Li Y-T, Wei J-P, Yan P, Zhang L-P, Han X, Han W-Y (2019) Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.). Environ Exp Bot 161:367–374

    Article  CAS  Google Scholar 

  • Liu X, Chi H, Yue M, Zhang X, Li W, Jia E (2012) The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. J Plant Growth Regul 31:436–447

    Article  CAS  Google Scholar 

  • Liu X, Tang S, Dou Z, Li G, Liu Z, Wang S, Ding C, Ding Y (2016) Effects of MeJA on the physiological characteristics of japonica rice wuyunjing 24 and ningjing 3 during early grain filling stage under heat stress. Chin J Rice Sci 30:291–303

    CAS  Google Scholar 

  • Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q, Li C, Zhai Q (2019) MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31:106–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manan A, Ayyub C, Pervez MA, Ahmad R (2016) Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pak J Agric Sci 53:35–41

    Google Scholar 

  • Marriboina S, Attipalli RR (2020) Hydrophobic cell-wall barriers and vacuolar sequestration of Na+ ions are among the key mechanisms conferring high salinity tolerance in a biofuel tree species,Pongamia pinnata L. pierre. Environ Exp Bot 171:103949

  • Meng X, Han J, Wang Q, Tian S (2009) Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chem 114:1028–1035

    Article  CAS  Google Scholar 

  • Mir MA, Sirhindi G, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J Plant Growth Regul 37:1195–1209

    Article  CAS  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plant 23:545–556

    Article  CAS  Google Scholar 

  • Moradpour M, Abdulah SNA (2020) CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol J 18:32–44

    Article  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mustafa MA, Ali A, Seymour G, Tucker G (2016) Enhancing the antioxidant content of carambola (Averrhoa carambola) during cold storage and methyl jasmonate treatments. Postharv Biol Technol 118:79–86

    Article  CAS  Google Scholar 

  • Mustafa MA, Ali A, Seymour G, Tucker G (2018) Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage. Sci Hortic 231:89–96

    Article  CAS  Google Scholar 

  • Nafie E, Hathout T, Mokadem A, Shyma A (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Braz J Plant Physiol 23:161–174

    Article  CAS  Google Scholar 

  • Nahar K, Kyndt T, Hause B, Höfte M, Gheysen G (2013) Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol Plant Microb Int 26:106–115

    Article  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  PubMed  CAS  Google Scholar 

  • Nemes R, Koltai E, Taylor AW, Suzuki K, Gyori F, Radak Z (2018) Reactive oxygen and nitrogen species regulate key metabolic, anabolic, and catabolic pathways in skeletal muscle. Antioxidants 7:85

    Article  PubMed Central  CAS  Google Scholar 

  • Ouli-Jun ZCH, Zhou-Bin L, Ge W, Bo-Zhi Y, Xue-Xiao Z (2017) Mitigation of waterlogging-induced damages to pepper by exogenous MeJA. Pak J Bot 49:1127–1135

    CAS  Google Scholar 

  • Parmoon G, Ebadi A, Jahanbakhsh S, Hashemi M (2019) Physiological response of fennel (Foeniculum vulgare Mill.) to drought stress and plant growth regulators. Russ J Plant Physiol 66:795–805

    Article  CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    Article  CAS  Google Scholar 

  • Pellegrini E, Trivellini A, Campanella A, Francini A, Lorenzini G, Nali C, Vernieri P (2013) Signaling molecules and cell death in Melissa officinalis plants exposed to ozone. Plant Cell Rep 32:1965–1980

    Article  PubMed  CAS  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez A et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Per TS, Khan NA, Masood A, Fatma M (2016) Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased S-assimilation and glutathione production in mustard. Front Plant Sci 7:1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Qi J, Zhang M, Lu C, Hettenhausen C, Tan Q, Cao G, Zhu X, Wu G, Wu J (2018) Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway. Sci Rep 8:1–9

    Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The Jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radhakrishnan R, Lee I-J (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32:22–30

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019a) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  PubMed Central  CAS  Google Scholar 

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019b) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Wheat production in changing environments. Springer, pp 557–577

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020a) Plant Adaptation and Tolerance to Environmental Stresses: Mechanisms and Perspectives. In: Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I. Springer, pp 117–145

  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M (2020b) Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology 9:177

    Article  PubMed Central  CAS  Google Scholar 

  • Ren Q, Sun Y, Guo H, Wang C, Li C, Ge F (2015) Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in Helicoverpa armigera. Entomol Exp Appl 154:188–198

    Article  CAS  Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20:2479

    Article  PubMed Central  CAS  Google Scholar 

  • Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, Dong X (2015) Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host Microbe 18:169–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MDC, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, Aroca R (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995–1008

    Article  PubMed  CAS  Google Scholar 

  • Savchenko T, Kolla VK, Wang CQ et al (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–1160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad P (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mat 15:122882

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS (2015) Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J Biol Sci 22:656–663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D (2011) Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 124:964–970

    Article  CAS  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  PubMed  CAS  Google Scholar 

  • Shahzad A, Pitann B, Ali H, Qayyum M, Fatima A, Bakhat H (2015) Maize genotypes differing in salt resistance vary in jasmonic acid accumulation during the first phase of salt stress. J Agron Crop Sci 201:443–451

    Article  CAS  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Hamayun M, Kang S-M, Lee I-J (2015) Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiol Biochem 96:406–416

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    PubMed  PubMed Central  Google Scholar 

  • Shyu C, Figueroa P, de Pew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howea GA (2012) JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24:536–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh I, Shah K (2014) Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 108:57–66

    Article  PubMed  CAS  Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci 7:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirhindi G, Mir MA, Sharma P, Gill SS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21:559–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI (2020) Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy 10:699

    Article  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talebi M, Moghaddam M, Pirbalouti AG (2018) Methyl jasmonate effects on volatile oil compounds and antioxidant activity of leaf extract of two basil cultivars under salinity stress. Acta Physiol Plant 40:34

    Article  CAS  Google Scholar 

  • Tamaoki M, Nakajima N, Kubo A, Aono M, Matsuyama T, Saji H (2003) Transcriptome analysis of O 3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol Biol 53:443–456

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M (2011) RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol 52:1686–1696

    Article  PubMed  CAS  Google Scholar 

  • Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Hassan MN, Roberts TH (2020) Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS ONE 15:e0232269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thireault C, Shyu C, Yoshida Y, St Aubin B, Campos ML, Howe GA (2015) Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J 82:669–679

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuominen H, Overmyer K, KeinaÈnen M, Kollist H, Kangasjärvi J (2004) Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis. Plant J 39:59–69

    Article  PubMed  CAS  Google Scholar 

  • Ullah I, Waqas M, Khan MA, Lee I-J, Kim W-C (2017) Exogenous ascorbic acid mitigates flood stress damages of Vigna angularis. Appl Biol Chem 60:603–614

    Article  CAS  Google Scholar 

  • Ulloa-Inostroza EM, Alberdi M, Meriño-Gergichevich C, Reyes-Díaz M (2017) Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improve the antioxidant performance of Vaccinium corymbosum. Plant Soil 412:81–96

    Article  CAS  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SC (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477

    Article  PubMed  CAS  Google Scholar 

  • Vos IA, Moritz L, Pieterse CM, Van Wees S (2015) Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front Plant Sci 6:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F (2016) Hormone controlled UV-B responses in plants. J Exp Bot 67:4469–4482

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Yu G, Liu P (2019) Transporter-mediated subcellular distribution in the metabolism and signaling of jasmonates. Front Plant Sci 10:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21:1446

    Article  PubMed Central  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wasternack C, Strnad M (2018) Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int J Mol Sci 19:2539

    Article  PubMed Central  CAS  Google Scholar 

  • Wasternack C, Xie D (2010) The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required. Plant Signal Behav 5:337–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Wu X, Li Z, Duan L, Zhang M (2012) Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul 31:113–123

    Article  CAS  Google Scholar 

  • Xu Y-H, Liao Y-C, Zhang Z, Liu J, Sun P-W, Gao Z-H, Sui C, Wei J-H (2016) Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis. Sci Rep 6:21843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59:373–381

    Article  CAS  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids' action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  PubMed  CAS  Google Scholar 

  • Yang YX, Wu C, Ahammed GJ, Wu C, Yang Z, Wan C, Chen J (2018) Red light-induced systemic resistance against root-knot nematode is mediated by a coordinated regulation of salicylic acid, jasmonic acid and redox signaling in watermelon. Front Plant Sci 9:899. https://doi.org/10.3389/fpls.2018.00899

    Article  PubMed  PubMed Central  Google Scholar 

  • Yosefi A, Akbar Mozafari A, Javadi T (2020) Jasmonic acid improved in vitro strawberry (Fragaria × ananassa Duch.) resistance to PEG-induced water stress. Plant Cell Tiss Org Cult 142:549–558

    Article  CAS  Google Scholar 

  • Yao Y, You J, Ou Y, Ma J, Wu X, Xu G (2015) Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. Plant Physiol Biochem 90:23–31

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Liu H, Shao X, Yu F, Wei Y, Ni Z, Xu F, Wang H (2016) Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage. Postharvest Biol Technol 113:8–16

    Article  CAS  Google Scholar 

  • Zafar SA, Zaidi SS, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71:470–479

    Article  PubMed  CAS  Google Scholar 

  • Zaid A, Mohammad F (2018) Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J Plant Growth Regul 37:1331–1348

    Article  CAS  Google Scholar 

  • Zhai Q, Li C (2019) The plant Mediator complex and its role in jasmonate signaling. J Exp Bot 70:3415–3424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao S, Ma Q, Xu X, Li G, Hao L (2016) Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress. J Plant Growth Regul 35:603–610

    Article  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim J-M, To TK, Li W (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci 108:12539–12544

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the scientists whose excellent work has been cited in this study which helped us to gain insight into the presented area and ultimately help us to prepare an up-to-date review.

Funding

There was no external funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

AR conceived the idea. All authors equally contributed in writing. AR and MSM prepared the figures. AR, SC, ZZ, and MSM prepared the tables. AR, MHS, and MH, proofread and improved the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ali Raza or Mirza Hasanuzzaman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Charagh, S., Zahid, Z. et al. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep 40, 1513–1541 (2021). https://doi.org/10.1007/s00299-020-02614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02614-z

Keywords

Navigation