Skip to main content

Advertisement

Log in

Cytosolic APX2 is a pleiotropic protein involved in H2O2 homeostasis, chloroplast protection, plant architecture and fertility maintenance

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Rice cytoplasmic APX2 is a pleiotropic protein, densely distributed around chloroplasts. It plays key roles in H2O2 homeostasis and chloroplast protection, and is related to plant architecture and fertility regulation.

Abstract

Ascorbate peroxidases (APXs) catalyze the conversion of H2O2 into H2O. In this report, we systematically investigated the function of cytosolic APX2 using a T-DNA knockout mutant. Loss of OsAPX2 altered rice architecture including shoot height and leaf inclination, resulting in shoot dwarfing, leaf dispersion and fertility decline. Sixty-five differentially expressed proteins were identified in flag leaves of the milk-ripe stage, mainly involved in photosynthesis, glycolysis and TCA cycle, redox homeostasis, and defense. The absence of APX2 severely impacted the stability of chloroplast proteins, and dramatically reduced their expression levels. Subcellular localization showed that APX2 was enriched around each chloroplast to form a high concentration sphere, highlighting chloroplasts as key targets protected by the protein. Accumulation of H2O2 was suppressed in the KO-APX2 mutant, which may benefit from increased CAT activity and functional complementation of APX family members. Unexpectedly, the accumulation of soluble sugar, especially sucrose increased significantly, suggesting that APX2 was involved in regulation of sugar metabolism. Obviously, roles of the cytosolic APX2 are very profound and complex in rice. It can be concluded that the cytosolic APX2 is a pleiotropic protein and an important regulator in ROS homeostasis, chloroplast protection, carbohydrate metabolism as well as plant architecture and fertility maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal GK, Jwa N-S, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322:93–103

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant physiol 141:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bart R, Chern M, Park C-J, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant methods 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bertani A, Brambilla I, Menegus F (1981) Effect of anaerobiosis on carbohydrate content in rice roots. Biochemie Physiologie der Pflanzen 176:835–840

    Article  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FE, Margis-Pinheiro M, Silveira JA (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705–1722

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants (vol 40). American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Caverzan A, Bonifacio A, Carvalho FE, Andrade CM, Passaia G, Schünemann M, dos Santos Maraschin F, Martins MO, Teixeira FK, Rauber R (2014) The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Sci 214:74–87

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Hu J, Guo S, Wang J, Cheng Y, Dang X, Wu L, He Y (2012) Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration. J Exp Bot 63:711–726

    Article  CAS  PubMed  Google Scholar 

  • Daie J (1993) Cytosolic fructose-1, 6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway. Photosynthesis research 38:5–14

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy M, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol plant pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Fang W-C, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Handel E (1968) Direct microdetermination of sucrose. Analytical biochemistry 22:280–283

    Article  PubMed  Google Scholar 

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic acids Res 35:585–587

    Article  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Mol Biol 7:786–791

    Article  CAS  Google Scholar 

  • Jiang G, Yin D, Zhao J, Chen H, Guo L, Zhu L, Zhai W (2016) The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Sci Rep 6:26104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Shriram V, Nikam TD, Jawali N, Shitole MG (2009) Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance. Arch Agron Soil Sci 55:379–394

    Article  CAS  Google Scholar 

  • Li L, Chen X, Shi L, Wang C, Fu B, Qiu T, Cui S (2017) A proteome translocation response to complex desert stress environments in perennial phragmites sympatric ecotypes with contrasting water availability. Front Plant Sci 8:511

    PubMed  PubMed Central  Google Scholar 

  • Linthorst HJ, Van Loon L, van Rossum CM, Mayer A, Bol JF, van Roekel JS, Meulenhoff EJS, Cornelissen BJ (1990) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant-Microbe Interact 3:252–258

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Luck H (1974) Catalase. In: Bergmeyer HU, Gawahen K (eds) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 885–894

    Google Scholar 

  • Maruta T, Inoue T, Noshi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012) Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H2O2 in Arabidopsis plants. Biochim Biophys Acta 1820:1901–1907

    Article  CAS  PubMed  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, Van Breusegem F, Kangasjarvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (APX1)-deficient Arabidopsis plants. The Plant J 34:187–203

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CW, Carvalho FE, Rosa SB, Alves-Ferreira M, Andrade CM, Ribeiro-Alves M, Silveira JA, Margis R, Margis-Pinheiro M (2012) Modulation of genes related to specific metabolic pathways in response to cytosolic ascorbate peroxidase knockdown in rice plants. Plant Biol 14:944–955

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, González M-C (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JA, Ferreira-Silva SL, Abreu-Neto J, Margis R, Margis-Pinheiro M (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548–558

    Article  CAS  PubMed  Google Scholar 

  • Sairam R, Shukla D, Saxena D (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant 40:357–364

    Article  CAS  Google Scholar 

  • Suzuki N, Miller G, Sejima H, Harper J, Mittler R (2013) Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. J Exp Bot 64:253–263

    Article  CAS  PubMed  Google Scholar 

  • Swiader JM, Moore A (2002) Spad-chlorophyll response to nitrogen fertilization and evaluation of nitrogen status in dryland and irrigated pumpkins. J Plant Nutr 25:1089–1100

    Article  CAS  Google Scholar 

  • Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci 5:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

    Article  CAS  PubMed  Google Scholar 

  • Van Tunen A, Koes R, Spelt C, Van der Krol A, Stuitje A, Mol J (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7:1257

    PubMed  PubMed Central  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: Struct Funct Bioinf 64:643–651

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PloS one 8:e57472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S-Q, Hu J, Guo L-B, Qian Q, Xue H-W (2010) Rice leaf inclination 2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell research 20:935–947

    Article  CAS  PubMed  Google Scholar 

  • Zheng X (2008) Clone and function analysis of OsSIZ1 and OsAPX2 in rice. Dissertation, Chinese Academy of Agricultural Sciences

Download references

Acknowledgements

We thank Prof. Tiegang Lu at Biotechnology Research Institute of Chinese Academy of Agricultural Sciences for rice seeds; Dr. Lanxin Shi for proof reading the manuscript; and Ms. Xikun Wu for her support. This work was supported by Beijing Natural Science Foundation (6092002) and a special fund from Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suxia Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Kang Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 8 KB)

Supplementary material 2 (XLSX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Li, L., Qiu, T. et al. Cytosolic APX2 is a pleiotropic protein involved in H2O2 homeostasis, chloroplast protection, plant architecture and fertility maintenance. Plant Cell Rep 37, 833–848 (2018). https://doi.org/10.1007/s00299-018-2272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2272-y

Keywords

Navigation