Skip to main content
Log in

Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The genes coding for wheat ATG4 and ATG8 were cloned and their roles in autophagy were verified. Implications of ATG4/ATG8 in wheat responses to stresses were suggested by expression profiling.

Abstract

Autophagy-related proteins ATG4 and ATG8 are crucial for autophagy biogenesis. ATG4 processes ATG8 precursor to expose its C-terminal glycine for phosphatidyl ethanolamine (PE) lipidation. ATG8, in the form of ATG8-PE adduct, functions in the organization dynamics of autophagic membranes. Here, we report the identification of two/nine members of the ATG4/ATG8 family from common wheat (Triticum aestivum L.). Expression of each wheat ATG4/ATG8 could complement the autophagy activity of yeast atg4/atg8 mutant cells. GFP fusion proteins of ATG8s, especially of ATG8s with innate C-terminal-exposed glycines, localized to punctate autophagic membranes. Both of purified ATG4s could cleave ATG8s in vitro, but they had different activities and different preferences for ATG8 substrates. Two times of transcript accumulation, an early one and a late one, of ATG4s/ATG8s were detected in the early phases of the Pm21- and Pm3f-triggered wheat incompatible reactions to the powdery mildew causal fungus Blumeria graminis f. sp. tritici (Bgt), and fluorescence microscopy also revealed a Bgt-induced enhanced wheat autophagy level in the Pm21-triggered incompatible reaction. Only one time of Bgt-induced transcript accumulation of ATG4s/ATG8s, corresponding to but much higher than the late one in incompatible reactions, was detected in a susceptible line isogenic to the Pm21 resistance line. These results suggested positive roles of ATG4/ATG8-associated autophagy process in the early stage and possible negative roles in the late stage of wheat immunity response to Bgt. In addition, expression of wheat ATG4s/ATG8s was also found to be upregulated by abiotic stress factors and distinctively regulated by different phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATG:

Autophagy-related gene

PE:

Phosphatidyl ethanolamine

EST:

Expressed sequence tag

ORF:

Open reading frame

GFP:

Green fluorescent protein

ET:

Ethylene

SA:

Salicylic acid

MeJA:

Methyl jasmonate

ABA:

Abscisic acid

PEG:

Polyethylene glycol

qRT-PCR:

Quantitative real-time PCR

TA:

Transcript accumulation

References

  • Bassham DC (2007) Plant autophagy-more than a starvation response. Curr Opin Plant Biol 10:587–593

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta 9:1397–1403

    Article  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2:2–11

    Article  PubMed  CAS  Google Scholar 

  • Chung T, Suttangkakul A, Vierstra RD (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149:220–234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143:1132–1139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F (2008) In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J Biol Chem 283:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37

    Article  PubMed  CAS  Google Scholar 

  • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T et al (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D et al (2002) Leaf senescence and starvation induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayward AP, Dinesh-Kumar SP (2011) What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49:557–576

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O et al (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773–783

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47:1641–1652

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  PubMed  CAS  Google Scholar 

  • Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567:302–306

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar BA, Mitou G, Korkmaz G, Gozuacik D, Budak H (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161:1722–1736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66:953–968

    Article  PubMed  CAS  Google Scholar 

  • Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M et al (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66:818–830

    Article  PubMed  CAS  Google Scholar 

  • Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    Article  PubMed  CAS  Google Scholar 

  • Liu GS, Sheng XY, Greenshields DL, Ogieglo A, Kaminskyj S, Selvaraj G, Wei YD (2005) Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol Plant Microbe Interact 18:730–741

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mariño G, Uría JA, Puente XS, Quesada V, Bordallo J, López-Otín C (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 278:3671–3678

    Article  PubMed  Google Scholar 

  • Mitou G, Budak H, Gozuacik D (2009) Techniques to study autophagy in plants. Int J Plant Genomics 2009:451357

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Hattori M, Jauh G, Rogers JC (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44:795–802

    Article  PubMed  CAS  Google Scholar 

  • Nair U, Yen WL, Mari M, Cao Y, Xie Z, Baba M et al (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8:780–793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  PubMed  CAS  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20–27

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Reggiori F, Klionsky DJ (2013) Autophagic processes in Yeast: mechanism, machinery and regulation. Genetics 194:341–361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S (2012) Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 31:4304–4317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26(1125):1128–1132

    Google Scholar 

  • Su W, Ma H, Liu C, Wu J, Yang J (2006) Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33:273–278

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Nishimura MT, Zhao T, Tang D (2011) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68:74–87

    Article  PubMed  CAS  Google Scholar 

  • Woo J, Park E, Dinesh-Kumar SP (2014) Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases. Proc Natl Acad Sci USA 111:863–868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu F, Li Y, Wang F, Noda NN, Zhang H (2012) Differential function of the two Atg4 homologues in the aggrephagy pathway in Caenorhabditis elegans. J Biol Chem 287:29457–29467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xia K, Liu T, Ouyang J, Wang R, Fan T, Zhang M (2011) Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res 18:363–377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xia T, Xiao D, Liu D, Chai W, Gong Q, Wang NN (2012) Heterologous expression of ATG8c from Soybean Confers Tolerance to Nitrogen Deficiency and Increases Yield in Arabidopsis. PLoS one 7:e37217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshimoto K (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53:1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8 s, ubiquitin-Like Proteins, and their deconjugation by ATG4 s are essential for plant autophagy. Plant Cell 16:2967–2983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R et al (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Tianjin, China (Grant number 12JCZDJC23000); the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant number 131026); and the Open Fund of Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University (Grant number 52LX12).

Conflict of interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhong Wang.

Additional information

Communicated by Jeong Sheop Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

For supplementary materials, please refer to the online file Supporting Information.docx which contains:

Table S1. List of primers used in this paper.

Figure S1. Multiple alignments of wheat ATG8s and homologues from other species. The alignment was produced in ClustalX 2.1 software. Sequences in the alignment include the nine wheat ATG8s here identified, AER27507 (TdATG8) from Triticum dicoccoides, XP_003581707 (BdATG8a) and XP_003571383 (BdATG8b) from Brachypodium distachyon, Os07g0512200 (OsATG8a), Os04g0624000 (OsATG8b), Os08g0191600 (OsATG8c) and Os02g0529150 (OsATG8d) from Oryza sativa, ACJ73920 (ZmATG8a), ACJ73921 (ZmATG8b), ACJ73922 (ZmATG8c), ACJ73923 (ZmATG8d) and ACJ73925 (ZmATG8e) from Zea mays, At4g21980 (AtATG8a), At4g04620 (AtATG8b), At1g62040 (AtATG8c), At2g05630 (AtATG8d), At2G45170 (AtATG8e), At4g16520 (AtATG8f), At3g60640 (AtATG8 g), At3g06420 (AtATG8h) and At3g15580 (AtATG8i) from Arabidopsis thaliana, ACU13796 (GmATG8a), ACU14633 (GmATG8b), ACU17086 (GmATG8c), BAH22449 (GmATG8d), ACU15101 (GmATG8e), ACU19559 (GmATG8f), ACU13862 (GmATG8g), ACU16419 (GmATG8h), BAH22448 (GmATG8i) and ACU19611 (GmATG8k) from Glycine max, NP_009216 (HsATG8/GATE16/GABARAPL2) from Human and NP_009475 (ScATG8) from Yeast. Names of wheat ATG8s are boxed. One hundred percent similarity, black; 80–100 % similarity, dark gray; 60–80 % similarity, light gray; <60 % similarity, white. Hashes and asterisks, respectively, indicate conserved essential residues at the N-terminal microtubule binding site and at the ATG7 binding site. The C-terminal conservative glycine for PE-conjugation is indicated by an arrowhead.

Figure S2. Multiple alignments of wheat ATG4s and homologues from other species. The alignment was produced in ClustalX 2.1 software. Sequences in the alignment include the two wheat ATG4s here identified, Os03g0391000 (OsATG4a) and Os04g0682000 (OsATG4b) from Oryza sativa, ACJ73912 (ZmATG4a) and ACJ73914 (ZmATG4b) from Zea mays, At2g44140 (AtATG4a) and At3g59950 (AtATG4b) from Arabidopsis thaliana, NP_443168 (HsATG4a) from Human and NP_014176 (ScATG4) from Yeast. One hundred percent similarity, black; 80 to 100 % similarity, dark gray; 60 to 80 % similarity, light gray; <60 % similarity, white. The conserved Peptidase_C54 domain is under thick line;Arrowheads mask the canonical catalytic triad of cysteine protease: Cys, Asp and His.

Supplementary material 1 (DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, D., Zhang, W., Sun, H. et al. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. Plant Cell Rep 33, 1697–1710 (2014). https://doi.org/10.1007/s00299-014-1648-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1648-x

Keywords

Navigation