Skip to main content

Advertisement

Log in

New phenotypic characteristics of three tmm alleles in Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Three new tmm mutants were isolated and showed differential phenotypes from tmm - 1 , and TMM overexpression led to abnormal leaf trichomes.

Abstract

TOO MANY MOUTH (TMM) plays a significant role in the stomatal signal transduction pathway, which involves in the regulation of stomatal distribution and patterning. Three mutants with clustered stomata were isolated and identified as new alleles of tmm. tmm-4 mutation included a base transversion from adenine to thymidine in position 1,033 of the TMM coding region and resulted in premature termination of translation at position 345 of TMM. tmm-5 had a base transition from cytosine to thymidine in 244 of TMM and translated 82 amino acids before premature termination. tmm-6 mutation took a base transition from guanine to adenine in 463 of TMM and changed a glycine (Gly) to an arginine (Arg) in position 155 of the protein. tmm-6 had an evident reduction of stomatal clusters and fewer stomata in cluster compared with other tmm alleles, possibly due to decreased level of entry divisions in cells next to two stomata or their precursors. tmm-5 and tmm-6 were hypersensitive to abscisic acid (ABA) in seedling growth and seed germination, while tmm-4 was defective in response to ABA during seed dormancy, suggesting that TMM was involved in ABA signaling transduction. Interestingly, overexpression of TMM resulted in the reduction of leaf trichomes and their branches, and this might reveal a new function of TMM in trichome development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balkunde R, Pesch M, Hulskamp M (2010) Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr Top Dev Biol 91:299–321

    Article  CAS  PubMed  Google Scholar 

  • Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163–181

    Article  CAS  PubMed  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Xue Q, McCray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo L, Terzaghi W, Wan J, Deng XW, Wang H (2013) The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 25:517–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate-stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed Central  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folkers U, Berger J, Hulskamp M (1997) Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development 124:3779–3786

    CAS  PubMed  Google Scholar 

  • Geisler M, Yang M, Sack FD (1998) Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. Planta 205:522–530

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Nadeau J, Sack FD (2000) Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12:2075–2086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  CAS  PubMed  Google Scholar 

  • Hulskamp M, Misra S, Jurgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555–566

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Baker A, Webb A, Jia J, WJ L (2006) Segregation and identification of IAA6-knocked out mutant of Arabidopsis. In: Xu ZH, Li JY, Pua EC, Xue YB (eds) 11th IAPTC&B Congress Abstracts. Kluwer Academic Publishers, Boston p 64

  • Koornneef M (1981) The complex syndrome of ttg mutants. Arabidopsis Info Serv 18:45–51

    Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Gao F, Kanno Y, Jordan MC, Kamiya Y, Seo M, Ayele BT (2013) Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS ONE 8:e56570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • Luo DL, Oppenheimer DG (1999) Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci. Development 126:5547–5557

    CAS  PubMed  Google Scholar 

  • Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA (2009) Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant 2:803–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadeau JA, Sack FD (2002a) Stomatal development in Arabidopsis. The Arabidopsis Book

  • Nadeau JA, Sack FD (2002b) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Ni BR, Bradford KJ (1993) Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds (sensitivity of germination to abscisic acid, gibberellin, and water potential). Plant Physiol 101:607–617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue-specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16:1616–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  • Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU (2007) Termination of asymmetric cell division and differentiation of stomata. Nature 445:501–505

    Article  CAS  PubMed  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439:290–294

    Article  CAS  PubMed  Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissue. Cambridge University Press, New York

    Book  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    Article  CAS  PubMed  Google Scholar 

  • Shpak ED, Berthiaume CT, Hill EJ, Torii KU (2004) Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development 131:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:e1003577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Telfer A, Bollman KM, Poethig RS (1997) Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645–654

    CAS  PubMed  Google Scholar 

  • Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XF, Zhang DP (2008) Abscisic acid receptors: multiple signal-perception sites. Ann Bot 101:311–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tor A, Zipfel C, de Wit PJ, Jones JD, Tor M, Thomma BP (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147:503–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Cao H, Sun Y, Li X, Chen F, Carles A, Li Y, Ding M, Zhang C, Deng X, Soppe WJ, Liu YX (2013) Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation. Plant Cell 25:149–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Sack FD (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7:2227–2239

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. F. Sack (University of British Columbia) for useful discussion and gifts of tmm-1 and TMMpro:: TMM-GFP; Dr. Pengfei Jia for taking the confocal and DIC images. This work is supported by the National Natural Science Foundation of China (NSFC) (Grant NO. 30300029, 30670124, 31070247, 91017002 and 31271460), the National Basic Research Program of China (Grant NO. 2009CB941500), and the program for New Century Excellent Talents of the Ministry of Education (Grant NO. NCET-06-0897).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiwen Hou.

Additional information

Communicated by K. Chong.

L. Yan, X. Cheng, and R. Jia contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Cheng, X., Jia, R. et al. New phenotypic characteristics of three tmm alleles in Arabidopsis thaliana . Plant Cell Rep 33, 719–731 (2014). https://doi.org/10.1007/s00299-014-1571-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1571-1

Keywords

Navigation