Skip to main content
Log in

cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

cGMP promotes ethylene production and enhances the perception of ethylene. Endogenous ethylene or cGMP accumulation maintains ion homeostasis to enhancing salt resistance. etr1 - 3 is insensitive to cGMP under salt stress.

Abstract

In the present study, we presented a signaling network involving ethylene and cGMP in salt resistance pathway of Arabidopsis roots. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). etr1-3 displayed a greater electrolyte leakage, thiobarbituric acid reactive substances and Na+/K+ ratio, but a lower plasma membrane (PM) H+-ATPase activity compared to WT under the different NaCl contents. Application of 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or 8-Br-cGMP (the cGMP analog) alleviated NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing PM H+-ATPase activity in WT, but not in etr1-3. Roots treated with 8-Br-cGMP could promote ethylene production and enhance the expression of ACC synthase gene in WT. In addition, the 8-Br-cGMP action in NaCl stress was inhibited by aminooxyacetic acid (an inhibitor of ethylene biosynthesis), but 6-Anilino-5,8-quinolinedione (Ly83583, a guanylate cyclase inhibitor) could not affect ACC action in WT. These results suggest that ethylene functions as a downstream signal of cGMP that stimulates the PM H+-ATPase activity, which finally results in regulating ion homeostasis in Arabidopsis tolerance to salt. Moreover, cGMP enhanced the perception of ethylene in Arabidopsis under salt stress, which reversed the salt-induced increase of ETR1 and increased ERF1 at the transcript levels in WT. In a word, cGMP modulates salt resistance pathway of ethylene through regulating biosynthesis and perception of ethylene in Arabidopsis roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Asensi-Fabado MA, Cela J, Müller M, Arrom L, Chang C, Munné-Bosch S (2012) Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to saltstress. J Plant Physiol 169:360–368

    Article  CAS  PubMed  Google Scholar 

  • Benavente LM, Alonso JM (2006) Molecular mechanisms of ethylene signaling in Arabidopsis. Mol BioSyst 2:165–173

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. PNAS 110:1963–1971

    Article  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    Article  CAS  PubMed  Google Scholar 

  • García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61(14):3885–3899

    Article  PubMed  Google Scholar 

  • Gévaudant F, Duby G, Stedingk EV, Zhao RM, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776

    Article  PubMed Central  PubMed  Google Scholar 

  • Goh CH, Kinoshita T, Oku T, Shimazaki K (1996) Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplasts. Plant Physiol 111:433–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123:1449–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi Y, Nakamura S, Takemiya A, Takahashi Y, Shimazaki K, Kinoshita T (2010) Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase. Plant Cell Physiol 51:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Inoue S, Takahashi K, Kinoshita T (2011) Immunohisto-chemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. Plant Cell Physiol 52:1238–1248

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  CAS  PubMed  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J (2004) Salt cress: a halophyte and cryophyte Arabidopsis related model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1717–1737

    Article  Google Scholar 

  • Isner JC, Nühse T, Maathuis FJM (2012) The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J Exp Bot 63:3199–3205

    Article  CAS  PubMed  Google Scholar 

  • Kagota S, Tamashiro A, Yamaguchi Y, Nakamura K, Kunitomo M (2002) Highsalt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharmacol Exp Ther 302:344–351

    Article  CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Krysan PJ, Young JC, Tax F, Sussman MR (1996) Identification of transferred DNA insertions within Arabidopsis genome is involved in signal transduction and ion transport. PNAS 93:8145–8150

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li JS, Jia HL (2013) cGMP modulates Arabidopsis lateral root formation through regulation of polar auxin transport. Plant Physiol Biochem 66:105–117

    Article  CAS  PubMed  Google Scholar 

  • Li JS, Chen GS, Wang XM, Zhang YL, Jia HL, Bi YR (2011a) Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii. Physiol Plantarum 141:239–250

    Article  CAS  Google Scholar 

  • Li JS, Wang XM, Zhang YL, Jia HL, Bi YR (2011b) cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. Planta 234:709–722

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Lucena C, Waters BM, Romera FJ, Garcia MJ, Morales M, Alcantara E, Perez-Vicente R (2006) Ethylene could influence ferric reductase, iron transporter and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57:4145–4154

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711

    Article  CAS  PubMed  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miguel A, Frédéric G, Mohammed O, Marc B (2003) The plasma membrane proton pump ATPase, the significance of gene subfamilies. Planta 216:355–365

    Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signal ling in plants. New Phytol 159:10–12

    Article  Google Scholar 

  • Niu X, Zhu JK, Narasimhan ML, Bressan RA, Haseqawa PM (1993) Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta 190:433–438

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Bressan R, Hasegawa P, Pardo J (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsson A, Svennelid F, Ek B, Sommarin M, Larsson C (1998) A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol 118:551–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Bermann RE (1994) Gaseous nitric oxide stimulates guanosine ~3′,5′-cyclic monophosphate (cGMP) formation in spruce needles. Phytochemistry 36:259–262

    Article  CAS  Google Scholar 

  • Qiu QS (1999) Influence of osmosis stress on the lipid physical states of plasma membranes form wheat roots. Acta Bot Sin 41:161–165

    CAS  Google Scholar 

  • Qiu QS, Su XF (1998) The influence of extracellular-side Ca2+ on the activity of the plasma membrane H+-ATPase from wheat roots. Aust J Plant Physiol 25:923–928

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. PNAS 95:5812–5817

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu MZ, Xu Y, Chen SL (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958

    Article  CAS  PubMed  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YB, Feng HY, Qu Y, Cheng JQ, Zhao ZG, Zhang MX, Wang XL, An LZ (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61

    Article  CAS  Google Scholar 

  • Wang HH, Liang XL, Wan Q, Wang XM, Bi YR (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  CAS  PubMed  Google Scholar 

  • Waters BM, Lucena C, Romera FJ, Jester GG, Wynn AN, Rojas CL, Alcántara E, Pérez-Vicente R (2007) Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiol Biochem 45:293–301

    Article  CAS  PubMed  Google Scholar 

  • Xiong LM, Zhu JK (2002) Salt tolerance. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville

    Google Scholar 

  • Xu Z, Chen M, Li L, Ma Y (2008) Functions of the ERF transcription factor family in plants. Botany 86:969–977

    Article  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologsi A (2003) Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112

    Article  CAS  PubMed  Google Scholar 

  • Yang YL, Zhang F, He WL, Wang XM, Zhang LX (2003) Iron-mediated inhibition of H+-ATPase in plasma membrane vesicles isolated from wheat roots. Cell Mol Life Sci 60:1249–1257

    CAS  PubMed  Google Scholar 

  • Yuan R, Wu Z, Kostenyuk IA, Burns JK (2005) G-protein-coupled alpha2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. J Exp Bot J 56:1867–1875

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, Takemiya A, Song CP, Kinoshita T, Shimazaki K (2004) Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced depho-sphorylation of the plasma membrane H+ -ATPase in guard cell protoplasts. Plant Physiol 136:4150–4158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  Google Scholar 

  • Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R (2013) EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    Article  CAS  PubMed  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work is from the Northwest A&F University doctor start-up Foundation (Z109021116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisheng Li.

Additional information

Communicated by M. Menossi.

J. Li and H. Jia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Jia, H. & Wang, J. cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Rep 33, 447–459 (2014). https://doi.org/10.1007/s00299-013-1545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1545-8

Keywords

Navigation