Skip to main content
Log in

Elucidating hormonal/ROS networks during seed germination: insights and perspectives

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using “-omics” technologies together with physiological and biochemical approaches have revealed that seed germination is a very complex process that depends on multiple biochemical and molecular variables. The pivotal role of phytohormones in promoting germination now appears to be interdependent with ROS metabolism, involving mitogen-activated protein kinase cascade activation, gene expression and post-translational protein modifications. This review is, thus, an attempt to summarize the new discoveries involving ROS and seed germination. The study of these interactions may supply markers of seed quality that might eventually be used in breeding programs to improve crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signalling pathway regulates grain dormancy in barley. Plant Cell Environ 34:980–993

    Article  PubMed  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331:806–814

    Article  CAS  Google Scholar 

  • Bajji M, M’Hamdi M, Gastiny F, Rojas-Beltran JA, du Jardin P (2007) Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers. Biotechnol Agron Soc Environ 11:121–131

    CAS  Google Scholar 

  • Barba-Espín G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994

    Article  PubMed  Google Scholar 

  • Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919

    Article  PubMed  Google Scholar 

  • Barba-Espín G, Clemente-M MJ, Nicolas E, Almansa MS, Cantero E, Albacete A, Hernandez JA, Diaz-Vivancos P (2012) Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiol Biochem 59:30–36

    Article  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci 6:508–509

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    Article  PubMed  CAS  Google Scholar 

  • Bewley D (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. Monona Drive, American Society of Plant Physiologist, Rockville

    Google Scholar 

  • Chen Z, Silva H, Klessing DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-H, Chao Y-Y, Hsu YY, Kao CH (2013) Heme oxygenase is involved in H2O2-induced lateral root formation in apocynin-treated rice. Plant Cell Rep 32:219–226

    Article  PubMed  CAS  Google Scholar 

  • Chiu KY, Chen CL, Sung JM (2002) Effect of priming temperature on storability of primed sh-2-sweet corn seed. Crop Sci 42:1993–2003

    Article  Google Scholar 

  • De Gara L, de Pinto MC, Arrigoni O (1997) Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant 100:894–900

    Article  Google Scholar 

  • de Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–2569

    Article  PubMed  Google Scholar 

  • de Tullio MC, Arrigoni O (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13:249–260

    Article  Google Scholar 

  • Demidchik V (2012) Reactive oxygen species and oxidative stress in plants. In: Shabala S (ed) Plant stress physiology. CAB International, Oxfordshire, pp 24–58

    Chapter  Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:332–341

    Google Scholar 

  • Feng Y, Liu D, Yao H, Wang J (2007) Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch Biochem Biophys 467:48–57

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspect of seed dormancy. Ann Rev Plant Biol 59:387–415

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between the stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Fulgosi H, Soll J, Maraschin SF, Korthout HAAJ, Wang M, Testerink C (2002) 14–3-3 proteins and plant development. Plant Mol Biol 50:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H et al (2002a) Importance of methionine biosynthesis for Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H et al (2002b) Proteomics of Arabidopsis seeds germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Gidrol X, Lin WS, Degousee N, Yip SF, Kush A (1994) Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur J Biochem 224:21–28

    Article  PubMed  CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Debska K, Andryka P, Bogatek R (2010a) The beneficial effect of small toxic molecules on dormancy alleviation and germination of apple embryos is due to NO formation. Planta 232:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Czajkowska K, Bogatek R (2010b) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61:75–84

    Article  CAS  Google Scholar 

  • Guan L, Scandalios JG (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci USA 92:5930–5934

    Article  PubMed  CAS  Google Scholar 

  • Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stabilization by cytokinin and brassinosteroid. Plant J 57:606–614

    Article  PubMed  CAS  Google Scholar 

  • Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J (2009) Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol 149:961–980

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinase ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–102

    Google Scholar 

  • Ito N, Tomizawa K, Tanaka K, Matsui M, Kendrick RE, Sato T, Nakagawa H (1997) Characterization of 26S proteasome α- and β-type and ATPase subunits from spinach and their expression during early stages of seedling development. Plant Mol Biol 34:307–316

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Huang B (2002) Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Sci 42:202–207

    Article  PubMed  CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy MK, Burgos-Rivera B, McKinney EC, Ruzicka DR (2007) Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. Plant Cell 19:3111–3126

    Article  PubMed  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Ann Rev Plant Physiol Plant Mol Biol 44:283–307

    Google Scholar 

  • Kepczynski J, Kepczynska E (1997) Ethylene in seed dormancy and germination. Physiol Plant 101:720–726

    Article  CAS  Google Scholar 

  • Kimura M, Nambara E (2010) Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Mol Biol 73:119–129

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Nguyen V, Schoeder JL (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Xing D, Li L, Zhang L (2007) Rapid determination of seed vigor based on the level of superoxide generation during early imbibitions. Photochem Photobiol Sci 6:767–774

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    Article  PubMed  CAS  Google Scholar 

  • Lozano RM, Wong JH, Yee BC, Peters A, Kobrehel K, Buchanan BB (1996) New evidence for a role of thioredoxin h in germination and seedling development. Planta 200:100–106

    Article  CAS  Google Scholar 

  • Lu C, Han MH, Guevara-García A, Fedoroff NV (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA 99:15812–15817

    Article  PubMed  CAS  Google Scholar 

  • Maris AF, Kern AL, Picada JN, Boccardi F, Brendel M, Henriques JA (2000) Glutathione, but not transcription factor Yap1, is required for carbon source-dependent resistance to oxidative stress in Saccharomyces cerevisiae. Curr Genet 37:175–182

    Article  PubMed  CAS  Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou JP, Kamiya Y, Nambara E, Truong HN (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  PubMed  CAS  Google Scholar 

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    Article  CAS  Google Scholar 

  • Matilla AJ, Matilla-Vazquez MA (2008) Involvement of ethylene in seed physiology. Plant Sci 175:87–97

    Article  CAS  Google Scholar 

  • Meinhard M, Grill E (2001) Hydrogen peroxide is a regulator of ABAI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508:443–446

    Article  PubMed  CAS  Google Scholar 

  • Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links abscisic acid-response regulator to redox signalling. Planta 214:775–782

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Coutu J, Shulaev V, Mittler R (2008) Reactive oxygen signalling in plants. In: Yang Z (ed) Annual plant reviews, intracellular signaling in plants, vol 33. Wiley-Blackwell, Oxford, pp 189–201

    Chapter  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Poulos TL (2008) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidant and reactive oxygen species in plants. Blackwell Publishing, Oxford, pp 87–100

    Google Scholar 

  • Mori IC, Murata Y, Uraji M (2009) Integration of ROS and hormole signalling. In: del Río LA, Puppo A (eds) Reactive oxygen species in plant signalling. Springer, Dordrech, pp 25–42

    Chapter  Google Scholar 

  • Müller K, Linkies A, Vreeburg RAM, Fry SC (2009) In vivo cell wall loosening by hydroxyl radicals during cross seed germination and elongation growth. Plant Physiol 150:1855–1865

    Article  PubMed  Google Scholar 

  • Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2011) The Arabidopsis calcium dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 155:553–561

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:675–689

    Article  Google Scholar 

  • Nanogaki H, Basel GW, Bewley JD (2010) Germination-still a mystery. Plant Sci 179:574–581

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8′-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  PubMed  CAS  Google Scholar 

  • Oracz K, El Maarouf-Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

  • Oracz K, El Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signalling during germination. Plant Physiol 150:494–505

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Masia D, Perez-Amador MA, Carbonell P, Aniento F, Carbonell J, Marcote MJ (2008) Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta 227:1333–1342

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pandey H, Nandi SK, Nadeem M, Palni LMS (2000) Chemical stimulation of seed germination in Aconitum heterophyllum Wall. and A. balfourii Stapf.: important Himalayan species of medical value. Seed Sci Tech 28:39–48

    Google Scholar 

  • Petruzzelli L, Coraggio I, Leubner-Metzger G (2000) Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta 211:144–149

    Article  PubMed  CAS  Google Scholar 

  • Posmyk MM, Corbineau F, Vinel D, Bailly C, Côme D (2001) Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol Plant 111:473–482

    Article  PubMed  CAS  Google Scholar 

  • Puntarulo S, Galleano M, Sanchez RA, Boveris A (1991) Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochem Biophys Acta 1074:277–283

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C et al (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Belghazu M, Huget R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Christensen HE, Ishimaru Y, Dong CH, Chao MW, Cleary AL (2000) Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiol 124:1637–1647

    Article  PubMed  CAS  Google Scholar 

  • Ranjan R, Lewak S (1995) Interaction of jasmonic and abscisic acid in the control of lipases and proteases in germinating apple embryos. Physiol Plant 93:421–426

    Article  CAS  Google Scholar 

  • Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen H, Bailly C, Kranner I (2010) Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ 33:59–75

    PubMed  CAS  Google Scholar 

  • Ros-Barceló A, Gómez-Ros LV, Ferrer MA, Hernández JA (2006) The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees-Struct Funct 20:145–156

    Article  Google Scholar 

  • Sassa H, Oguchi S, Inoue T, Hirano H (2000) Primary structural features of the 20S proteasome subunits of rice (Oryza sativa). Gene 250:61–66

    Article  PubMed  CAS  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Article  CAS  Google Scholar 

  • Singh S, Sawhney VK (1992) Endogenous hormones in seeds, germination behaviour and early seedling characteristics in a normal and ogura cytoplasmic male sterile line of rapeseed (Brassica napus L.). J Exp Bot 43:1497–1505

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Rolletschek H, Seiffert U, Weschke W, Wobus U (2010) Barley grain development: toward an integrative view. Int Rev Cell Mol Biol 281:49–89

    Article  PubMed  CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  PubMed  CAS  Google Scholar 

  • Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signaling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Google Scholar 

  • Wang M, van der Meulen RM, Visser K, Van Schaik HP, Van Duijn B, de Boer AH (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8:129–137

    Article  CAS  Google Scholar 

  • Wang WQ, Møller IM, Song SQ (2012) Proteomic analysis of embryogenic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 77:68–86

    Article  PubMed  CAS  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First on the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  PubMed  CAS  Google Scholar 

  • Wrzaczek M, Hirt H (2001) Plant MAP kinase pathways: how many and what for? Biol Cell 93:81–87

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293–303

    Article  PubMed  CAS  Google Scholar 

  • Xu HN, Li KZ, Yang FJ, Shi Q, Wang X (2010) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37:3157–3163

    Article  PubMed  CAS  Google Scholar 

  • Xu Z-Y, Kim DH, Hwang I (2013) ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep 32:807–813. doi:10.1007/s00299-013-1396-3

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Takagi H, Abe H, Yokota T, Takahashi N (1981) Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol 22:689–697

    CAS  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PDV acknowledges CSIC and the Spanish Ministry of Economy and Competitiveness for the “Ramon & Cajal” research contract, co-financed by FEDER funds. GBE thanks CSIC for his JAE Pre-doctoral Fellowship. The authors also thank the Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (II PCTRM 2007–2010 Framework) [11883/PI/09].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Hernández.

Additional information

Communicated by N. Stewart.

P. Diaz-Vivancos and G. Barba-Espín contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz-Vivancos, P., Barba-Espín, G. & Hernández, J.A. Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32, 1491–1502 (2013). https://doi.org/10.1007/s00299-013-1473-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1473-7

Keywords

Navigation