Skip to main content

Advertisement

Log in

The root of ABA action in environmental stress response

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariel FD, Diet A, Crespi M, Chan RL (2010) The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress. Plant Signal Behav 5:1666–1668

    Article  CAS  PubMed  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi:10.1016/j.plantsci.2012.03.001

    Article  PubMed  Google Scholar 

  • Bertrand A, Robitaille G, Castonguay Y, Nadeau P, Boutin R (1997) Changes in ABA and gene expression in cold-acclimated sugar maple. Tree Physiol 17:31–37

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara GB, Nguyen TT, Verslues P (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol. doi:10.1104/pp.112.202408

    PubMed  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The abscisic acid insensitive 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  CAS  PubMed  Google Scholar 

  • Brown LK, George TS, Thompson JA, Wright G, Lyon J, Dupuy L, Hubbard SF, White PJ (2012) What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann Bot 110:319–328. doi:10.1093/aob/mcs085

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI, Eapen D, Campos ME (2013) Root hydrotropism: an update. Am J Bot 100:14–24. doi:10.3732/ajb.1200306

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586:1742–1747. doi:10.1016/j.febslet.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236. doi:10.1093/jxb/erh005

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Lee Y, Kim SY, Hwang JU (2012) Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signaling and negatively regulates abscisic acid (ABA) signaling during root development. Plant Cell Environ. doi:10.1111/pce.12028

    PubMed  Google Scholar 

  • Daie J, Campbell WF (1981) Response of tomato plants to stressful temperatures: increase in abscisic acid concentrations. Plant Physiol 67:26–29. doi:10.1104/pp.67.1.26

    Article  CAS  PubMed  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    Article  PubMed  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28. doi:10.1111/j.1365-313X.2005.02425.x

    Article  CAS  PubMed  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945. doi:10.1126/science.1153795

    Article  CAS  PubMed  Google Scholar 

  • Dixit AR, Dhankher OP (2011) A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS one 6:e20921. doi:10.1371/journal.pone.0020921

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480. doi:10.1093/jxb/ers300

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell. doi:10.1105/tpc.112.107227

    PubMed  Google Scholar 

  • Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546. doi:10.1104/pp.011841

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Li S, Yu D (2010) Identification of an Arabidopsis nodulin-related protein in heat stress. Mol Cells 29:77–84. doi:10.1007/s10059-010-0005-3

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the solitary-root/IAA14 gene of Arabidopsis. Plant J 29:153–168

    Article  CAS  PubMed  Google Scholar 

  • Furukawa J, Abe Y, Mizuno H, Matsuki K, Sagawa K, Kojima M, Sakakibara H, Iwai H, Satoh S (2011) Seasonal fluctuation of organic and inorganic components in xylem sap of Populus nigra. Plant Root 5:56–62

    Article  CAS  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302. doi:10.1016/j.pbi.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542. doi:10.1111/j.0960-7412.2008.03510.x

  • Guo D, Liang J, Qiao Y, Yan Y, Li L, Dai Y (2012) Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. J Plant Physiol 169:1102–1111. doi:10.1016/j.jplph.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  • Han W, Rong H, Zhang H, Wang MH (2009) Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana. Biochem Biophys Res Commun 378:695–700. doi:10.1016/j.bbrc.2008.11.080

    Article  CAS  PubMed  Google Scholar 

  • Hao H, Jiang C, Shi L, Tang Y, Yao J, Li Z (2009) Effects of root temperature on thermostability of photosynthetic apparatus in Prunus mira seedlings. J Plant Ecol (Chin) 33:984–992

    CAS  Google Scholar 

  • He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24:1815–1833. doi:10.1105/tpc.112.098707

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. doi:10.1007/s11033-011-0823-1

    Article  PubMed  Google Scholar 

  • Imai R, Ali A, Pramanik HR, Nakaminami K, Sentoku N, Kato H (2004) A distinctive class of spermidine synthase is involved in chilling response in rice. J Plant Physiol 161:883–886

    Article  CAS  PubMed  Google Scholar 

  • Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384. doi:10.1126/science.1164147

    Article  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949. doi:10.1105/tpc.9.11.1935

    CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21:770–782. doi:10.1016/j.devcel.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  • Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154:1646–1658. doi:10.1104/pp.110.159152

    Article  CAS  PubMed  Google Scholar 

  • Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150. doi:10.1093/jxb/erl274

    Article  CAS  PubMed  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409. doi:10.1093/jxb/erq410

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937. doi:10.1016/j.devcel.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. doi:10.1104/pp.010320

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897. doi:10.1104/pp.105.062257

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727. doi:10.1104/pp.110.154617

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Jung JH, Han DY, Seo PJ, Park WJ, Park CM (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938. doi:10.1007/s00425-011-1552-3

    Article  CAS  PubMed  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis abscisic acid-insensitive2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771. doi:10.1105/tpc.9.5.759

    CAS  PubMed  Google Scholar 

  • Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295. doi:10.1105/tpc.106.041426

    Google Scholar 

  • Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011) GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. J Plant Physiol 168:2153–2160. doi:10.1016/j.jplph.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  • Liu TX, Zhang ZS, Wamg JB, Li RQ (2009) Changes in abscisic acid immunolocalization in heat-stressed pepper seedlings. Pak J Bot 41:1173–1178

    CAS  Google Scholar 

  • Liu T, Zhang L, Yuan Z, Hu X, Lu M, Wang W, Wang Y (2012) Identification of proteins regulated by ABA in response to combined drought and heat stress in maize roots. Acta Physiol Plant 388:1–13. doi:10.1007/s11738-012-1092-x

    Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697. doi:10.1104/pp.112.208298

    Article  CAS  PubMed  Google Scholar 

  • Ma XF, Yu T, Wang LH, Shi X, Zheng LX, Wang MX, Yao YQ, Cai HJ (2010) Effects of water deficit at seedling stage on maize root development and anatomical structure. J Appl Ecol (Chin) 21:1731–1736

    Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE (2009) Lateral root formation. In: Beeckman T (ed) Annual plant reviews volume 37: root development. Wiley-Blackwell, Boston, pp 83–126. doi:10.1002/9781444310023.ch4)

    Google Scholar 

  • McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Lauriere C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449. doi:10.1111/j.1365-313X.2012.05089.x

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki T, Miyazawa Y, Takahashi H (2010) Transcriptome analysis of gene expression during the hydrotropic response in Arabidopsis seedlings. Environ Exp Bot 69:148–157. doi:10.1016/j.envexpbot.2010.03.013

    Article  CAS  Google Scholar 

  • Moriwaki T, Miyazawa Y, Fujii N, Takahashi H (2012a) Light and abscisic acid signaling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ 35:1359–1368. doi:10.1111/j.1365-3040.2012.02493.x

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H (2012b) Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am J Bot. doi:10.3732/ajb.1200419

    PubMed  Google Scholar 

  • Muday GK, Rahman A (2008) Auxin transport and the integration of gravitropic growth. In: Plant tropisms. Blackwell Publishing Ltd, Boston, pp 47–77. doi:10.1002/9780470388297.ch3

  • Mulkey T, Evans M, Kuzmanoff K (1983) The kinetics of abscisic acid action on root growth and gravitropism. Planta 157:150–157. doi:10.1007/bf00393649

    Article  CAS  Google Scholar 

  • Nagl W (1972) Selective inhibition of cell cycle stages in the Allium root meristem by colchicine and growth regulators. Am J Bot 59:346–351. doi:10.2307/2441543

    Article  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475. doi:10.1016/j.cell.2006.05.050

    Google Scholar 

  • Pál M, Janda T, Szalai G (2011) Abscisic acid may alter the salicylic acid-related abiotic stress response in maize. J Agron Crop Sci 197:368–377. doi:10.1111/j.1439-037X.2011.00474.x

    Article  Google Scholar 

  • Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38

    Article  CAS  PubMed  Google Scholar 

  • Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ 31:205–217. doi:10.1111/j.1365-3040.2007.01752.x

    Article  CAS  PubMed  Google Scholar 

  • Quiroz-Figueroa F, Rodríguez-Acosta A, Salazar-Blas A, Hernández-Domínguez E, Campos M, Kitahata N, Asami T, Galaz-Avalos R, Cassab G (2010) Accumulation of high levels of ABA regulates the pleiotropic response of the nhr1 Arabidopsis mutant. J Plant Biol 53:32–44. doi:10.1007/s12374-009-9083-1

    Article  CAS  Google Scholar 

  • Rober-Kleber N, Albrechtova JT, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131:1302–1312. doi:10.1104/pp.013466

    Article  CAS  PubMed  Google Scholar 

  • Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222:98–106. doi:10.1007/s00425-005-1521-9

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues A, Santiago J, Rubio S, Saez A, Osmont KS, Gadea J, Hardtke CS, Rodriguez PL (2009) The short-rooted phenotype of the brevis radix mutant partly reflects root abscisic acid hypersensitivity. Plant Physiol 149:1917–1928. doi:10.1104/pp.108.133819

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PL, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421:185–190

    Article  CAS  PubMed  Google Scholar 

  • Saucedo M, Ponce G, Campos ME, Eapen D, Garcia E, Lujan R, Sanchez Y, Cassab GI (2012) An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin. J Exp Bot 63:3587–3601. doi:10.1093/jxb/ers025

    Article  CAS  PubMed  Google Scholar 

  • Schnall JA, Quatrano RS (1992) Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol 100:216–218

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127. doi:10.1007/s00425-011-1365-4

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289. doi:10.1104/pp.109.144220

    Article  CAS  PubMed  Google Scholar 

  • Sharma PD, Singh N, Ahuja PS, Reddy TV (2011) Abscisic acid response element binding factor 1 is required for establishment of Arabidopsis seedlings during winter. Mol Biol Rep 38:5147–5159. doi:10.1007/s11033-010-0664-3

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573. doi:10.1105/tpc.110.074641

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik-Inbar D, Adler G, Bar-Zvi D (2012) ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005. doi:10.1111/tpj.12091

    Article  Google Scholar 

  • Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662

    Article  CAS  PubMed  Google Scholar 

  • Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13. doi:10.1186/1471-2229-8-13

    Article  PubMed  Google Scholar 

  • Soon FF, Suino-Powell KM, Li J, Yong EL, Xu HE, Melcher K (2012) Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction. PLoS One 7:e47857. doi:10.1371/journal.pone.0047857

    Article  CAS  PubMed  Google Scholar 

  • Soucek P, Klima P, Rekova A, Brzobohaty B (2007) Involvement of hormones and KNOXI genes in early Arabidopsis seedling development. J Exp Bot 58:3797–3810. doi:10.1093/jxb/erm236

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Monroe-Augustus M, Rogers KC, Lin GL, Bartel B (2008) Arabidopsis iba response5 suppressors separate responses to various hormones. Genetics 180:2019–2031. doi:10.1534/genetics.108.091512

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211. doi:10.1007/s00425-002-0840-3

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi YY, Taniguchi M, Tsuge T, Oka A, Aoyama T (2010) Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism. Planta 231:491–497. doi:10.1007/s00425-009-1052-x

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. doi:10.1146/annurev.arplant.50.1.571

    Article  CAS  PubMed  Google Scholar 

  • Torre C, Diez JL, Lopez-Saez JF, Gimenez-Martin G (1972) Effect of abscisic acid on the cytological components of the root growth. Cytologia 37:197–205

    Article  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  Google Scholar 

  • Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:e1002172. doi:10.1371/journal.pgen.1002172

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Pickett FB, Turner J, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383. doi:10.1007/bf00633843

    Google Scholar 

  • Wu SH, Wang C, Chen J, Lin BL (1994) Isolation of a cDNA encoding a 70 kDa heat-shock cognate protein expressed in vegetative tissues of Arabidopsis thaliana. Plant Mol Biol 25:577–583

    Article  CAS  PubMed  Google Scholar 

  • Xin Z, Zhao Y, Zheng ZL (2005) Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiol 139:1350–1365. doi:10.1104/pp.105.068064

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

    CAS  PubMed  Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074. doi:10.1104/pp.106.084632

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J (2013) Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197:139–150. doi:10.1111/nph.12004

    Article  CAS  PubMed  Google Scholar 

  • Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH (2009) Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Z Naturforsch C 64:225–230

    CAS  PubMed  Google Scholar 

  • Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol 35:1207–1219

    CAS  PubMed  Google Scholar 

  • Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu Y (2012) GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 7:e33838. doi:10.1371/journal.pone.0033838

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685. doi:10.1111/j.1365-313X.2009.04092.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338. doi:10.1093/jxb/erm114

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548. doi:10.1073/pnas.0900349106

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jurgens G, Paul Knox J, Wang MH (2010a) ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774. doi:10.1111/j.1365-313X.2010.04367.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010b) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041. doi:10.1371/journal.pone.0016041

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZL, Nafisi M, Tam A, Li H, Crowell DN, Chary SN, Schroeder JI, Shen J, Yang Z (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14:2787–2797

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Franck C, Yang K, Pilot G, Heath LS, Grene R (2012) Mining for meaning: visualization approaches to deciphering Arabidopsis stress responses in roots and shoots. OMICS 16:208–228. doi:10.1089/omi.2011.0111

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981. doi:10.1093/jxb/eri294

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53:144–156. doi:10.1111/j.1365-313X.2007.03343.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose works could not be cited due to space constraints. This work is supported by the National Research Foundation Singapore under its Competitive Research Programme (CRP Award No. NRF2010NRF-CRP002-018; J. Xu), National University of Singapore Young Investigator Award (J. Xu) and Ministry of Education of Singapore Academic Research Fund (Tier 2; MOE2012-T2-1-157; J. Xu), National University of Singapore President’s Graduate Fellowship (J.H. Hong) and National University of Singapore research scholarship (S.W. Seah).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Communicated by P. Kumar.

J. H. Hong and S. W. Seah contributed equally to this work.

A contribution to the Special Issue: Plant Hormone Signaling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.H., Seah, S.W. & Xu, J. The root of ABA action in environmental stress response. Plant Cell Rep 32, 971–983 (2013). https://doi.org/10.1007/s00299-013-1439-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1439-9

Keywords

Navigation