Skip to main content
Log in

Heme oxygenase is involved in H2O2-induced lateral root formation in apocynin-treated rice

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Apocynin is a natural organic compound structurally related to vanillin. We demonstrated that hydrogen peroxide and heme oxygenase participated in apocynin-induced lateral root formation in rice.

Abstract

Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Information concerning the effect of apocynin on plants is limited. In this study, we examined the effect of apocynin on lateral root (LR) formation in rice. Treatment with apocynin induced LR formation and increased H2O2 production, but had no effect on nitric oxide production. Diphenyleneiodonium chloride, an inhibitor of H2O2 generating NADPH oxidase, was effective in reducing apocynin-induced H2O2 production and LR formation. Apocynin treatment also increased superoxide dismutase activity and decreased catalase activity. H2O2 application was able to increase the number of LRs. Moreover, H2O2 production caused by H2O2 and apocynin was localized in the root area corresponding to the LR emergence. Treatment with H2O2 and apocynin also increased heme oxygenase (HO) activity and induced OsHO1 mRNA expression. Lateral root formation and HO activity induced by H2O2 and apocynin were reduced by Zn protoporphyrin IX (the specific inhibitor of HO). Our data suggest that both H2O2 and HO are required for apocynin-induced LR formation in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insight into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Cao ZY, Xuan W, Liu ZY, Li XN, Zhao N, Xu P, Wang Z, Guan RZ, Shen WB (2007) Carbon monoxide promotes lateral roots formation in rapeseed. J Integr Plant Biol 49:1070–1079

    Article  CAS  Google Scholar 

  • Chen Y-H, Kao CH (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249:187–195

    Article  PubMed  CAS  Google Scholar 

  • Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51:951–960

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-H, Chao Y-Y, Hsu YY, Hong C-Y, Kao CH (2012) Heme oxygenase is involved in nitric oxide- and auxin-induced later root formation in rice. Plant Cell Rep 31:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome–chromophore biosynthesis encodes a protein related to heme oxygenases. Proc Natl Acad Sci USA 96:6541–6546

    Article  PubMed  CAS  Google Scholar 

  • Den Herder G, Van Isterdael G, Beckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 5:600–607

    Article  Google Scholar 

  • Dunand C, Crevecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis regulation and signaling. New Phytol 146:359–389

    Article  CAS  Google Scholar 

  • Gapper C, Dolan I (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  PubMed  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Xia K, Yang Z-M (2008) Regulation of tomato lateral root development by carbon monooxide and involvement in auxin and nitric oxide. J Exp Bot 59:3443–3452

    Article  PubMed  CAS  Google Scholar 

  • Han B, Xu S, Xie Y-J, Huang J-J, Wang L-J, Yang Z, Zhang C-H, Sun Y, Shen W-B, Xie G-S (2012) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184:63–74

    Article  PubMed  CAS  Google Scholar 

  • Hao ZB, Ichii M (1999) A mutant RM109 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Jpn J Crop Sci 68:245–252

    Article  CAS  Google Scholar 

  • Hsu YY, Chao Y-Y, Kao CH (2012a) Biliverdin-promoted lateral root formation is mediated through heme oxygenase in rice. Plant Signal Behav 7:885–887

    PubMed  Google Scholar 

  • Hsu YY, Chao Y-Y, Kao CH (2012b) Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium. J Plant Physiol. http://dx.doi.org/10.1016/j.jplph.2012.08.015

  • Huang A-X, She XP, Cao B-H, Ren Y (2011) Distribution of hydrogen peroxide during adventitious roots initiation and development in mung bean hypocotyls cutting. Plant Growth Regul 64:109–118

    Article  CAS  Google Scholar 

  • Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation. Can J Bot 65:729–735

    Article  CAS  Google Scholar 

  • Kicuchi G, Yoshida T, Noguchi M (2005) Heme oxygenase and heme degradation. Biochem Biophys Res Commun 338:558–567

    Article  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, Garcia MC, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Li S-W, Xue L, Xu S, Feng H, An L (2007) Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regul 52:173–180

    Article  CAS  Google Scholar 

  • Li S-W, Xue L, Xu S, Feng H, An L (2009a) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71

    Article  CAS  Google Scholar 

  • Li S-W, Xue L, Xu S, Feng H, An L (2009b) IBA-induced changes in antioxidant enzymes during adventitious rooting in mung bean seedlings: the role of H2O2. Environ Exp Bot 66:442–450

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fan L, Liu Z, Zhao N, Shen WB (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172:544–555

    Article  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramiroz A, Herresra-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 5:280–287

    Article  Google Scholar 

  • Matsumoto F, Obayashi T, Sasaki-Dekimoto Y, Ohta H, Takamiya K-I, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Yannarelli GG, Balestrasse KB, Batle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 228:1155–1163

    Article  Google Scholar 

  • Orozco-Cardenas ML, Arvaez-Váaqjez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed  CAS  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Capparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154:536–541

    Article  PubMed  CAS  Google Scholar 

  • Pei X, Murata Y, Benning G, Thomin S, Klusener B, Allen G, Grill E, Schroeder J (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Riganti C, Costamagna C, Bosia A, Ghigo D (2006) The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress. Toxicol Appl Pharmacol 212:179–187

    Article  PubMed  CAS  Google Scholar 

  • Riganti C, Costamagna C, Doublier S, Miraglia E, Polimeni M, Bosia A, Ghigo D (2008) The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress. Toxicol Appl Pharmacol 228:277–285

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832

    Article  PubMed  CAS  Google Scholar 

  • Su G-X, Zhang W-H, Liu Y-L (2006) Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J Integr Plant Biol 48:426–432

    Article  CAS  Google Scholar 

  • Tossi V, Cassia R, Lamattina L (2009) Apocynin-induced nitric oxide production confers antioxidant protection in maize leaves. J Plant Physiol 166:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Vejrazka M, Micek R, Stipek S (2005) Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta 1722:143–147

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Taketa S, Miyao A, Hirochika H, Ichii M (2006) Isolation of a novel lateral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci 170:70–77

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordial initiation in rice seedlings. Planta 230:599–610

    Article  PubMed  CAS  Google Scholar 

  • Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen W-B (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious shoot process. Plant Physiol 148:881–893

    Article  PubMed  CAS  Google Scholar 

  • Yannarelli G, Noriega GO, Battle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research Grant from the National Science Council of the Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Huei Kao.

Additional information

Communicated by Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YH., Chao, YY., Hsu, Y.Y. et al. Heme oxygenase is involved in H2O2-induced lateral root formation in apocynin-treated rice. Plant Cell Rep 32, 219–226 (2013). https://doi.org/10.1007/s00299-012-1356-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1356-3

Keywords

Navigation