Skip to main content
Log in

Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In this work, we studied the effects of cryopreservation on various parameters of early stages of germination of Phaseolus vulgaris seeds (0, 7 and 14 days). Percentages of germination, fresh mass of different plant parts, levels of chlorophyll pigments (a, b, total), malondialdehyde, other aldehydes, phenolics (cell wall-linked, free, and total) and protein were determined. No phenotypic changes were observed visually in seedlings recovered from cryopreserved seeds. However, several significant effects of seed liquid nitrogen exposure were recorded at the biochemical level. There was a significant negative effect of cryopreservation on shoot protein content, which decreased from 3.11 mg g−1 fresh weight for non-cryopreserved controls to 0.44 mg g−1 fresh shoot weight for cryopreserved seeds. On the other hand, cryopreservation significantly increased levels of other aldehydes than malondialdehyde in shoots at day 7, from 56.47 μmol g−1 for non-cryopreserved controls to 253.19 μmol g−1 fresh shoot weight for cryopreserved samples. Liquid nitrogen exposure significantly reduced phenolics contents (free, cell-wall linked, total) in roots at day 7 after onset of germination. In general, roots were more affected by cryostorage compared with other plant parts, while leaves were the least affected. The effects of seed cryopreservation seem to decline progressively along with seedling growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Benson E (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  • Berjak P, Bartels P, Benson E, Harding K, Mycock DJ, Pammenter NW, Sershen, Wesley-Smith J (2010) Cryoconservation of South African plant genetic diversity. In Vitro Cell Dev Biol Plant 47:65–81

    Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Companioni B, Mora N, Díaz L, Pérez A, Arzola M, Espinosa P, Hernández M, Ventura J, Pérez MC, Santos R, Lorenzo JC (2005) Identification of discriminant factors after treatment of resistant and susceptible banana leaves with Fusarium oxysporum f. sp. cubense culture filtrates. Plant Breed 123:1–8

    Google Scholar 

  • Dueñas M, Fernández D, Hernández T, Estrella I, Muñoz R (2005) Bioactive phenolic compounds of cowpeas (Vigna sinensis L.). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric 85:297–304

    Article  Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 8–20

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F (2010) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant Rev. Published on line: 3 November 2010

  • Engelmann F, Ramanatha Rao V (2012) Major research challenges and directions for future research. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species, Springer, Berlin (in press)

  • Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba

    Google Scholar 

  • Ericson MC, Alfinito SH (1984) Proteins produced during salt stress in Tobacco cell culture. Plant Physiol 74:506–509

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2010) (http://www.faostat.fao.org/. Accessed 17 Dec 2010

  • Forni C, Braglia R, Beninati S, Lentini A, Ronci M, Urbani A, Provenzano B, Frattarelli A, Tabolacci C, Damiano C (2010) Polyamine concentration, transglutaninase activity and changes in protein synthesis during cryopreservation of shoot tips of apple variety Annurca. CryoLetters 31(5):413–425

    PubMed  CAS  Google Scholar 

  • Geil PB, Anderson JW (1994) Nutrition and health implications of dry beans: a review. J Am Coll Nutr: 13549–13558

  • Gepts P, Beavis W, Brummer E, Shoemaker R, Stalker H, Weeden N, Young N (2005) Legumes as a model plant family. Genomics for food and feed report of the cross legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Granito M, Paolini M, Perez S (2008) Polyphenols and antioxidant capacity of Phaseolus vulgaris stored underextreme conditions and processed LWT. Food Sci Technol 41:994–999

    CAS  Google Scholar 

  • Greaves JA (1996) Improving suboptimal temperature in maize: the search for variation. J Exp Bot 47:307–323

    Article  CAS  Google Scholar 

  • Gurr S, McPherson J, Bowles D (1992) Lignin and associated phenolic acids in cell walls. In: Wilkinson DL (ed) Molecular plant pathology. Oxford Press, Oxford, pp 51–56

    Google Scholar 

  • Harding K, Marzalina M, Krishnapillay B, Nashatul Z, Normah MN, Benson EE (2000) Molecular stability assessments of trees regenerated from cryopreserved Mahogany (Swietenia Macrophylla King.) seed germplasm using non-radioactive techniques to examine the chromatin structure and DNA methylation status of the ribosomal RNA genes. J Trop Forest Sci 12:149–163

    Google Scholar 

  • Heath R, Packer J (1968) Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–57

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Krautler B (2011) Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta 1807:977–988

    Article  PubMed  Google Scholar 

  • ISTA (2005) International Rules for Seed Testing. Edition 2005. International Seed Testing Association, Bassersdorf, Suiza. http://www.seedtest.org

  • Jalink H, Frandas A, van Der Schoor R, Bino JB (1998a) Chlorophyll fluorescence of the testa of Brassica oleracea seeds as an indicator of seed maturity and seed quality. Sci Agric 55:88–93

    Article  Google Scholar 

  • Jalink H, van Der Scoor R, Frandas A, Van Pijlen JG (1998b) Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance. Seed Sci Res 8:437–443

    Article  Google Scholar 

  • Kaur Ch, Kapoor H (2002) Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 37:153–161

    Article  CAS  Google Scholar 

  • Lakhanpaul S, Babrekar PP, Chandel KPS (1996) Monitoring studies in onion (Allium cepa L.) seeds retrieved from storage at −20 °C and −180 °C. Cryoletters 17:219–232

    Google Scholar 

  • Latha S, Daniel M (2001) Phenolic antioxidants of some common pulses. J Food Sci Technol 38:272–273

    Google Scholar 

  • Layne REC (1992) Breeding cold hardy peaches and nectarines. Plant Breed Rev 10:271–308

    Google Scholar 

  • Leymarie J, Vitkauskaite G, Hoang H, Gendreau E, Chazoule V, Meimoun P, Corbineau F, Hayat El-Maarouf-Bouteau Bailly C (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53(1):96–106

    Article  PubMed  CAS  Google Scholar 

  • Linington SH, Pritchard HW (2001) Genebanks. In: Levin S (ed) Encyclopedia of biodiversity, vol 3. Academic Press, San Diego, pp 165–181

    Chapter  Google Scholar 

  • Martínez-Montero ME, Mora N, Quiñones J, González. Arnao MT, Engelmann F, Lorenzo JC (2002) Effect of cryopreservation on the structural and functional integrity of cell membranes of sugarcane (Saccharum sp.) embryogenic calluses. Cryoletters 23:237–244

    PubMed  Google Scholar 

  • Oomah BD, Cardador A, Loarca G (2005) Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L.). J Sci Food Agric 85:935–942

    Article  CAS  Google Scholar 

  • Palma (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40(6–8):521–350

  • Palonen P, Buszard D (1997) Current state of cold hardiness research on fruit crops. Can J Plant Sci 77:399–420

    Article  Google Scholar 

  • Parr AJ, Bolwell GP (2000) Review, phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80:982–1012

    Article  Google Scholar 

  • Perez G, Yanez E, Mbogholi A, Valle B, Sagarra F, Yabor L, Aragón C, González-Olmedo J, Isidrón M, Lorenzo JC (2012) New pineapple somaclonal variants: P3R5 and dwarf American. J Plant Sci 3:1–11

    Article  CAS  Google Scholar 

  • Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  PubMed  CAS  Google Scholar 

  • Pritchard HW (1995) Cryopreservation of seeds. In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols, vol 38. Humana Press Inc., Totowa, pp 133–144

    Chapter  Google Scholar 

  • Pritchard HW, Dickie JB (2003) Predicting seed longevity: use and abuse of seed viability equations. In: Smith RD et al (eds) Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 653–722

    Google Scholar 

  • Pritchard HW, Ashmore S, Berjak P, Engelmann F, González-Benito ME, Li DZ, Nadarajan J, Panis B, Pence V, Walters C (2009) Storage stability and the biophysics of preservation. In: Proceedings of Plant conservation for the next decade: a celebration of Kew’s 250th anniversary, 12–16 Oct. 2009, Royal Botanic Garden Kew, London, UK

  • Pszczola D (1998) Antioxidants: from preserving food quality to quality for life. Food Technol 55:51–59

    Google Scholar 

  • Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. Cryoletters 22:97–104

    PubMed  CAS  Google Scholar 

  • Revilla P, Butrón A, Cartea ME, Malvar RA, Ordás A (2005) Breeding for cold tolerance. In: Ashraf M, Harris PJC (eds) Abiotic stress plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 301–398

    Google Scholar 

  • Roberts E (1991) Genetic conservation in seed banks. Biol J Linnean Soc 43:23–29

    Article  Google Scholar 

  • Rocha NE, González RF, Ibarra FJ, Nava CA, Gallegos JA (2006) Effect of pressure cooking on the antioxidant activity of extracts from three common bean (P. vulgaris L.) cultivars. Food Chem 98:95–103

    Article  Google Scholar 

  • Salinas-Flores L, Adams SL, Wharton DA, Downes MF, Lim MH (2008) Survival of Pacific oyster, Crassostrea gigas, oocytes in relation to intracellular ice formation. Cryobiology 56:28–35

    Article  PubMed  Google Scholar 

  • Sanhewe AJ, Ellis RH (1996a) Seed development and maturation in Phaseolus vulgaris. 1. Ability to germinate and to tolerate desiccation. J Exp Bot 47:949–958

    Article  CAS  Google Scholar 

  • Sanhewe AJ, Ellis RH (1996b) Seed development and maturation in Phaseolus vulgaris. II. Post-harvest longevity in air-dry storage. J Exp Bot 47:959–965

    Article  CAS  Google Scholar 

  • Stamp P (1984) Chilling tolerance of young plants demonstrated on the example of maize (Zea mays L.). J Agr Crop Sci 7:81–83

    Google Scholar 

  • Standwood PC, Bass LN (1981) Seed germplasm preservation using liquid nitrogen. Seed Sci Technol 9:423

    Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 199–226

    Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  PubMed  CAS  Google Scholar 

  • Turkmen N, Sari F, Velioglu S (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93:713–718

    Article  CAS  Google Scholar 

  • Uragami A, Lucas MO, Ralambosoa J, Renard M, Dereuddre J (1993) Cryopreservation of microspore embryos of soilseed rape (Brassica napus) by dehydration in air with or without alginate encapsulation. Cryo Lett 14:83–90

    Google Scholar 

  • Vijayakumari K, Siddhuraju P, Pugalenthi M, Janardhanan K (1998) Effect of soaking and heat processing on the levels of antinutrients and digestible proteins in seeds of Vigna aconitifolia and Vigna sinensis. Food Chem 63:259–264

    Article  CAS  Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48:229–244

    Article  PubMed  Google Scholar 

  • Ward K, Scarth R, Daun JK, Vessey JK (1995) Chlorophyll degradation in summer oilseed rape and summer turnip rape during seed ripening. Can J Plant Sci 75:413–420

    Article  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agric Food Chem 48:3576–3580

    Article  PubMed  CAS  Google Scholar 

  • Yabor L, Arzola M, Aragón C, Hernández M, Arencibia A, Lorenzo JC (2006) Biochemical side effects of genetic transformation of pineapple. Plant Cell Tiss Org Cult 86:63–67

    Article  CAS  Google Scholar 

  • Yabor L, Aragón C, Hernández M, Arencibia AD, Lorenzo JC (2008) Biochemical side effects of the herbicide FINALE on bar gene containing transgenic pineapple plantlets. Euphytica 164:515–520

    Article  CAS  Google Scholar 

  • Yabor L, Valle B, Carvajal C, Aragón C, Hernandez M, Gonzalez J, Daquinta M, Arencibia AD, Lorenzo JC (2009) Characterization of a field-grown transgenic pineapple clone containing the genes chitinase, AP24, and bar. In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-009-9245-3

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Cuban Ministry for Superior Education. We are grateful to Mr. Roberto Méndez, Mrs. Maribel Rivas, Mr. René Carlos Rodríguez, Mr. Dariel López, Mr. Félix Palau, Mrs. Lourdes Yabor, Mrs. Bárbara Valle, Mrs. Julia Martínez, Mrs. Alitza Iglesias, and Mr. Yosvany Palmero for their excellent technical assistance and important experimental suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Lorenzo.

Additional information

Communicated by S. Merkle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cejas, I., Vives, K., Laudat, T. et al. Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Rep 31, 2065–2073 (2012). https://doi.org/10.1007/s00299-012-1317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1317-x

Keywords

Navigation