Skip to main content
Log in

Expression of KxhKN4 and KxhKN5 genes in Kalanchoë blossfeldiana ‘Molly’ results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Many potted plants like Kalanchoë have an elongated natural growth habit, which has to be controlled through the application of growth regulators. These chemicals will be banned in the near future in all the EU countries. Besides their structural functions, the importance of homeotic genes to modify plant architecture appears evident. In this work, the full length cDNA of five KNOX (KN) genes were sequenced from K. x houghtonii, a viviparous hybrid. Two constructs with the coding sequence of the class I and class II homeobox KN genes, KxhKN5 and KxhKN4, respectively, were overexpressed in the commercially important ornamental Kalanchoë blossfeldiana ‘Molly’. Furthermore, a post-transcriptional gene silencing construct was made with a partial sequence of KxhKN5 and also transformed into ‘Molly’. Several transgenic plants exhibited compact phenotypes and some lines had a relative higher number of inflorescences. A positive correlation between gene expression levels and the degree of compactness was found. However, a correlation between the induced phenotypes and the number of inserted copies of the transgene were not observed, although line ‘70-10’ with a high copy number also had the highest expression level. Moreover, overexpression of KxhKN4 resulted in plants with dark green leaves due to an elevated content of chlorophyll, a highly desired property in the ornamental plant industry. These transgenic plants show that a cisgenesis approach towards production of compact plants with improved quality as an alternative to chemical growth retardants may be feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida R, Shibata M (2002) High frequency of polyploidization in regenerated plants of Kalanchoe blossfeldiana cultivar ‘Tetra Vulcan’. Plant Biotech 19:329–334

    Article  CAS  Google Scholar 

  • Barley R, Waites R (2002) Plant meristem: the interplay of KNOX and gibberellins. Curr Biol 12:696–698

    Article  Google Scholar 

  • Bartlett J, Alves S, Smedley M, Snape J, Harwood W (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed  Google Scholar 

  • Bhatt AM, Etchells JP, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  PubMed  CAS  Google Scholar 

  • Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264

    Article  PubMed  CAS  Google Scholar 

  • Cassol D, de Silva FSP, Falqueto AR, Bacarin MA (2008) An evaluation of non-destructive methods to estimate total chlorophyll content. Photosynthetica 46:634–636

    Article  CAS  Google Scholar 

  • Chary SN, Hicks GR, Choi YG, Carter D, Raikhel NV (2008) Trehalose-6-Phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiol 146:97–107

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Cole M, Nolte C, Werr W (2006) Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucl Acids Res 34:1281–1292

    Article  PubMed  CAS  Google Scholar 

  • Cottage A, Yang A, Maunders H, De Lacy RC, Ramsay NA (2001) Identification of DNA sequences flanking t-DNA insertions by pcr-walking. Plant Mol Biol Rep 19:321–327

    Article  CAS  Google Scholar 

  • De Castro VL, Goes KP, Chiorato SH (2004) Developmental toxicity potential of paclobutrazol in the rat. Int J Environ Health Res 14:371–380

    Article  PubMed  Google Scholar 

  • Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD (2002) KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell 14:547–558

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC (2002) Shoot and floral meristem maintenance in Arabidopsis. Annu Rev Plant Biol 53:45–66

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto H, Tetsuo M, Tomonari M, Hamada T, Yakushiji M (1997) Growth-retardant and teratogenic effects of ketone bodies on early embryogenesis in rat whole embryo culture. J Matern Fetal Invest 7:92–98

    Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirement suspensions cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gehrig HH, Winter K, Cushman J, Borland A, Taybi T (2000) An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharides. Plant Mol Biol Rep 18:369–376

    Article  CAS  Google Scholar 

  • Giovannini A, Zottini M, Spena A, Allavena A (1999) Ornamental traits modification by rol genes in Osteospermum ecklonis transformed by Agrobacterium tumefaciens. In Vitro Cell Dev Biol 35:70–75

    Article  CAS  Google Scholar 

  • Gordon S, Chickarmane V, Ohno C, Meyerowitz E (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534

    Article  PubMed  CAS  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamant O, Pautot V (2010) Plant development: a TALE story. Comptes Rendus Biol 333:371–381

    Article  CAS  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature Genet 38:942–947

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961

    Article  PubMed  CAS  Google Scholar 

  • Hwang SJ, Lee MY, Sivanesan I, Jeong BR (2008) Growth control of Kalanchoe cultivars Rako and Gold Strike by application of paclobutrazol and uniconazole as soaking treatment of cuttings. Afr J Biotech 22:4212–4218

    Google Scholar 

  • Izumikawa Y, Takei S, Nakamura I, Mii M (2008) Production of inter-sectional hybrids between Kalanchoe spathulata and K. laxiflora (=Bryophyllum crenatum). Euphytica 163:123–130

    Article  Google Scholar 

  • Janssen BJ, Lund L, Sinha N (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Judy Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi A, Kiyosawa N, Suzuki Y, Murofushi N, Yamaguchi I (2000) Pharbitis class-1 knotted-like homeobox gene, PKn3, shares similar characteristics to those of class-2 knotted-like genes. Plant Cell Rep 9:911–920

    Article  Google Scholar 

  • Laura M, Borghi C, Regis C, Casetti A, Allavena A (2009) Over-expression and silencing of KxhKN5 gene in K x houghtonii. Acta Hort 836:265–269

    CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis Genomic Library in Agrobacterium. Bio/Technology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lin J, Müller KJ (2002) Structure and development of epiphylly in knox-transgenic tobacco. Planta 214:521–525

    Article  PubMed  CAS  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetive meritem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen D (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Lütken H, Jensen LS, Topp SH, Mibus H, Müller R, Rasmussen SK (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotech J 8:211–222

    Article  Google Scholar 

  • Magnani E, Hake S (2008) KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of knox transcriptional regulators missing the homeodomain. Plant Cell 20:875–887

    Article  PubMed  CAS  Google Scholar 

  • Mercuri A, Bruna S, De Benedetti L, Burchi G, Schiva T (2001) Modification of plant architecture in Limonium spp. induced by rol genes. Plant Cell Tissue Org Cult 65:247–253

    Article  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Bürglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794

    Article  PubMed  CAS  Google Scholar 

  • Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oerum JE, Christensen J (2001) Produktionsøkonomiske analyser af mulighederne for en reduceret pesticidanvendelse i dansk gartneri. 128:1–81

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen AA (2010) Kalanchoë øverst på toplisten for 2009. Gartner Tidende 126(9):20

    Google Scholar 

  • Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS (1994) Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci USA 91:5761–5765

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schattat MH, Klösgen RB, Marques JP (2004) A novel vector for efficient gene silencing in plants. Plant Mol Biol Rep 22:145–153

    Article  CAS  Google Scholar 

  • Sentoku N, Tamaoki M, Nishimura A, Matsuoka M (1998) The homeobox gene NTH23 of tobacco is expressed in the basal region of leaf primordia. Biochim Biophys Acta 1399:203–208

    PubMed  CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    Article  PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Article  PubMed  CAS  Google Scholar 

  • Sliwinski MK, Bosch JA, Yoon HS, Balthazar MV, Baum DA (2007) The role of two LEAFY paralogs from Idahoa scapigera (Brassicaceae) in the evolution of a derived plant architecture. Plant J 51:211–219

    Article  PubMed  CAS  Google Scholar 

  • Sørensen MT, Danielsen V (2006) Effects of the plant growth regulator, chlormequat, on mammalian fertility. Int J Androl 29:129–133

    Article  PubMed  Google Scholar 

  • Townsley-Brascamp W, Marr NE (1995) Evaluation and analysis of consumer preferences for outdoor ornamental plants. Acta Hort 391:199–208

    Google Scholar 

  • US Environmental Protection Agency (1993) EPA R.E.D. Document on daminozide. http://www.epa.gov/pesticides/reregistration/status_page_d.htm, pp 1–166

  • Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:1–7

    Article  CAS  Google Scholar 

  • Watillon B, Kettmann R, Boxus P, Burny A (1997) Knotted1-like homeobox genes are expressed during apple trees (Malus domestica [L.] Borkh) growth and development. Plant Mol Biol 33:757–763

    Article  PubMed  CAS  Google Scholar 

  • WO/2007/148970 Use of plant chromatin remodeling genes for modulating plant architecture and growth

  • WO/2010/007497 Glutamate decarboxylase (GAD) transgenic plants that exhibit altered plant architecture

  • Wu X, Chory J, Weigel D (2007) Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic development Dev Biol 309:306–316

    Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15:1566–1571

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2000) DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell 12:2143–2160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of the work described was funded under the Danish Ministry of Food, Agriculture and Fisheries (DFFE) and by the Italian Ministry of Agriculture, Food and Forestry in the framework of the AGRONANOTECH project. ML, CB and AA thank G. Morreale for his contribution to preliminary steps of gene cloning and C. Regis for sharing cloning of KxhKN4 and KxhKN5. Sille Høgly Petersen, Karen Rysbjerg Munk and Hanne Hasselager are acknowledged for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Lütken.

Additional information

Communicated by P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material

299_2011_1132_MOESM1_ESM.doc

Online Resource 1. Species of origin, accession number and brief description of selected class I KNOX homeodomain proteins used for the phylogenetic analysis reported in Fig. 1. To improve results, sequence of Physcomitrella patens (fern) and Ceratopteris richardii (moss) were added; the homeodomain protein of Acetabularia acetabulum (algae) was used as out group. (DOC 70 kb)

299_2011_1132_MOESM2_ESM.doc

Online Resource 2. Species of origin, accession number and brief description of selected class II KNOX homeodomain proteins used for the phylogenetic analysis reported in Fig. 2. To improve results, sequence of Physcomitrella patens (fern), Ceratopteris richardii (moss) and Selaginella kraussiana (clubmoss) were added; the homeodomain protein of Acetabularia acetabulum (algae) was used as out group. (DOC 56 kb)

Online Resource 3. Representative chromosome pictures for selected KN lines (jpg 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lütken, H., Laura, M., Borghi, C. et al. Expression of KxhKN4 and KxhKN5 genes in Kalanchoë blossfeldiana ‘Molly’ results in novel compact plant phenotypes: towards a cisgenesis alternative to growth retardants. Plant Cell Rep 30, 2267–2279 (2011). https://doi.org/10.1007/s00299-011-1132-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1132-9

Keywords

Navigation