Skip to main content
Log in

Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An efficient system for Agrobacterium-mediated transformation of Lilium × formolongi was established by preventing the drastic drop of pH in the co-cultivation medium with MES. Meristematic nodular calli were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm which harbored intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransfease II (NPTII) genes. After three days of co-cultivation on 2 g/l gellan gum-solidified MS medium containing 100 μM acetosyringone, 30 g/l sucrose, 1 mg/l picloram and different concentrations of MES, they were cultured on the same medium containing 12.5 mg/l meropenem to eliminate Agrobacterium for 2 weeks and then transferred onto medium containing the same concentration of meropenem and 25 mg/l hygromycin for selecting putative transgenic calli. Transient GUS expression was only observed by adding MES to co-cultivation medium. Hygromycin-resistant transgenic calli were obtained only when MES was added to the co-cultivation medium especially at 10 mM. The hygromycin-resistant calli were successfully regenerated into plantlets after transferring onto picloram-free medium. Transformation of plants was confirmed by histochemical GUS assay, PCR analysis and Southern blot analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

CTAB:

Cetyltrimethylammonium bromide

GUS:

β-Glucuronidase

Hm:

Hygromycin

MES:

2-morpholinoethane-sulfonic acid

References

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  CAS  Google Scholar 

  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21:333–340

    Article  Google Scholar 

  • Enríquez-Obregόn GA, Vάzquez-Padrόn RI, Prieto-Samsόnov DL, Pérez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnol Apl 14:169–174

    Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury J (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  • Hoshi Y, Kondo M, Mori S, Adachi Y, Nakano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Rep 22:359–364

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. PNAS 99:12369–12374

    Article  PubMed  CAS  Google Scholar 

  • Mercuri A, Benedetti LD, Bruna S, Bregliano R, Bianchini C, Foglia G, Schiva T (2003) Agrobacterium-mediated transformation with rol genes of Lilium longiflorum Thunb. Acta Hortic 612:129–136

    CAS  Google Scholar 

  • Mii M, Yuzawa Y, Suetomi H, Motegi T, Godo T (1994) Fertile plant regeneration from protoplasts of a seed-propagated cultivar of Lilium × formolongi by utilizing meristematic nodular cell clumps. Plant Sci 100:221–226

    Article  CAS  Google Scholar 

  • Miyoshi H, Usami T, Tanaka I (1995) High level of GUS gene expression driven by pollen-specific promoters in electroporated lily pollen protoplasts. Sex Plant Reprod 8:205–209

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nishihara M, Ito M, Tanaka I, Kyo M, Ono K, Irifune K, Morikawa H (1993) Expression of the β-glucuronidase gene in pollen of lily (Lilium longiflorum), tobacco (Nicotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiol 102:357–361

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Mii M (2007) Meropenem and moxalactam: novel β-lactam antibiotics for efficient Agrobacterium-mediated transformation. Plant Sci 172:564–572

    Article  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Stomp AM (1992) Histochemical localization of β-glucuronidase. In: Gallagher SR (eds). GUS protocols: using the GUS as a reporter of gene expression. Academic, San Diego, pp 103–113

    Google Scholar 

  • Suzuki S, Supaibulwatana K, Mii M, Nakano M (2001) Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161:89–97

    Article  CAS  Google Scholar 

  • Turk SCJ, Melchers LS, Den Dulk-Ras H, Regensburg-Tuϊnk AJG, Hooykaas PJJ (1991) Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol Biol 16:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Watad AA, Yun DJ, Matsumoto T, Niu X, Wu Y, Kononowicz AK, Bressan RA, Hasegawa PM (1998) Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Rep 17:262–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mii.

Additional information

Communicated by K. Kamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogaki, M., Furuichi, Y., Kuroda, K. et al. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi . Plant Cell Rep 27, 699–705 (2008). https://doi.org/10.1007/s00299-007-0481-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0481-x

Keywords

Navigation