Skip to main content
Log in

Functional analysis of BADH gene promoter from Suaeda liaotungensis K.

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A 1,993 bp region upstream of the gene encoding the betaine aldehyde dehydrogenase (BADH) was isolated from Suaeda liaotungensis K., and the analysis of the promoter sequence has revealed the existence of several putative cis-elements by the PLACE database. In this study, according to the characteristic of the BADH promoter, five chimeric constructs varied in the length of promoter fragments from −1,993, −1,466, −1,084, −573 and −300 to +62 bp relative to the transcriptional start site were placed to the upstream of the β-glucuronidase (GUS) coding region and transferred to Nicotiana tabacum L.cv.89 by Agrobacterium tumefaciens-mediated leaf-disc transformation. The functional properties of each promoter fragment were examined by GUS histochemical staining and fluorescence quantitative analyses in the transgenic tobacco leaves treated with different NaCl concentrations for 48 h. The results show that healthy transgenic plants had decreased GUS activity in leaves, whereas a higher GUS activity was observed when the transgenic plants were challenged with sodium chloride (NaCl). Induction levels were proportional to the concentration of NaCl treatment, allowing fine-tuning of protein expression. GUS enzyme activity was enhanced 6.3-fold in transgenic tobacco leaves containing −300 bp promoter fragment in the presence of 400 mmol/l NaCl compared to the noninductive leaves. This suggests that the smallest promoter fragment (−300 to +62 bp) possesses all the essential cis-acting elements and is sufficient for NaCl induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BADH:

Betaine aldehyde dehydrogenase

CaMV:

Cauliflower mosaic virus

GUS:

β-Glucuronidase

MUG:

4-Methylumbelliferyl-β-d-glucuronide

4-MU:

4-Methylumbelliferone

X-gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78. doi:10.1105/tpc.006

    Article  PubMed  CAS  Google Scholar 

  • Agarwal M, Hao YJ, Kapoor A, Dong CH, Fujii H, Zheng XW, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645. doi:10.1074/jbc.M605895200

    Article  PubMed  CAS  Google Scholar 

  • Bastola DR, Pethe VV, Winicov I (1998) Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38(6):1123–1135. doi:10.1023/A:1006081926699

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448. doi:10.1126/science.218.4571.443

    Article  PubMed  Google Scholar 

  • Bradfork MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90(1):322–329. doi:0032-0889/89/90/0322/08/$01.00/0

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B, Hong XH, Agarwal M, Zhu K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17(8):1043–1054. doi:10.1101/gad.1077503

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236. doi:10.1093/jxb/erh005

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that beta-alanine betaine and choline-O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97(3):1199–1205

    PubMed  CAS  Google Scholar 

  • Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45(3):353–363. doi:10.1023/A:1006497113323

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27(2):307–315. doi:10.1007/BF00020185

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21(2):141–146. doi:10.1007/s00299-002-0489-1

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291. doi:10.1038/7036

    Article  PubMed  CAS  Google Scholar 

  • Legaria J, Rajsbaum R, Muñoz-Clares RA, Villegas-Sepúlveda N, Simpson J, Iturriaga G (1998) Molecular characterization of two genes encoding betaine aldehyde dehydrogenase from amaranth. Expression in leaves under short-term exposure to osmotic stress of abscisic acid. Gene 218(1–2):69–76. doi:10.1016/S0378-1119(98)00381-3

    Article  PubMed  CAS  Google Scholar 

  • Li QL, Gao XR, Yu XH, Wang XZ, An LJ (2003) Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett 25(17):1431–1436. doi:10.1023/A:1025003628446

    Article  PubMed  CAS  Google Scholar 

  • Li QL, Zhang Y, Yin H, Li D (2006) Isolation of BADH gene promoter from Suaeda liaotungensis and its sequence analysis. Sheng Wu Gong Cheng Xue Bao 22(1):77–81

    PubMed  Google Scholar 

  • Malnoy M, Venisse JS, Reynoird JP, Chevreau E (2003) Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta 216(5):802–814. doi:10.1007/s00425-002-0932-0

    PubMed  CAS  Google Scholar 

  • McCue KF, Hanson AD (1992) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol 18(1):1–11. doi:10.1007/BF00018451

    Article  PubMed  CAS  Google Scholar 

  • Meng CX, Wei W, Su Z, Qin S (2006) Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis. Indian J Biochem Biophys 43(5):284–288

    PubMed  CAS  Google Scholar 

  • Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T (1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible location of its protein in peroxisomes. Plant J 11(5):1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yanguchi-Shinozaki K (2003) Interaction between two cis-element, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function in the oxygen-evolving photosystem II complex. Photosynth Res 44(3):243–252. doi:10.1007/BF00048597

    Article  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee JH, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cockagi JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9:49–60

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126(3):1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol 44:357–384. doi:10.1146/annurev.pp.44.060193.002041

    Article  CAS  Google Scholar 

  • Robinson SP, Jones GP (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Aust J Plant Physiol 13:659–668

    Article  CAS  Google Scholar 

  • Uno Y, Furihata T, Yoshida HAR, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97(21):11632–11637

    Article  PubMed  CAS  Google Scholar 

  • Weigel P, Weretilnyk EA, Hanson AD (1986) Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol 82(3):753–759

    PubMed  CAS  Google Scholar 

  • Weretilnyk EA, Hanson AD (1990) Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA 87(7):2745–2749

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in Sorghum. Plant Physiol 110(4):1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, Zhang GY, Liu FH, Wang J, Chen SY (1995) The study of BADH gene in Atriplex hortensis. Chin Sci Bull 40:741–745

    Google Scholar 

  • Yin XJ, Zhao YX, Luo D, Zhang H (2002a) Expression of the betaine aldehyde dehydrogenase (AcBADH) gene and isolation of its promoter from the halophyte Atriplex centralasiatica Iljin. J Plant Physiol Mol Biol 28(6):479–484

    CAS  Google Scholar 

  • Yin XJ, Zhao YX, Luo D, Zhang H (2002b) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta 1577(3):452–456. doi:10.1016/S0167-4781(02)00495-5

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 30370806), the Science and Technology Foundation of Liaoning Province (no. 20031060) and the Educational Department of Liaoning Province (no. 2004F091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuli Li.

Additional information

Communicated by J. Register.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yin, H., Li, D. et al. Functional analysis of BADH gene promoter from Suaeda liaotungensis K.. Plant Cell Rep 27, 585–592 (2008). https://doi.org/10.1007/s00299-007-0459-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0459-8

Keywords

Navigation