Skip to main content
Log in

Localized endocytosis in tobacco pollen tubes: visualisation and dynamics of membrane retrieval by a fluorescent phospholipid

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Two modes of endocytosis are known to occur in eucaryotic cells: fluid phase and receptor-mediated endocytosis. Fluid-phase endocytosis in plant cells resembles the retrieval of excess plasma membrane material previously incorporated by exocytosis. Pollen tubes need to carry out strong membrane retrieval due to their fast polar tip growth. Plasma membrane labelling of pollen tubes, grown in suspension, was achieved by the incorporation of a fluorescently modified phospholipid, 1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine (20 μM) and measured with a confocal laser-scanning microscope. Time course experiments revealed a highly localised and relatively fast plasma membrane retrieval below the tip within the first 5 min after phospholipid application. The retrieved fluorescent plasma membrane was quickly re-integrated into parts of the endomembrane pool and then redistributed to the pollen tube base and very tip of the apex, with the exception of the cortical endoplasmic reticulum (ER) and the mitochondria even after 1-h incubation period. Low temperature (10°C) and the actin filament depolymerizing cytochalasin D (2 μM) completely abolished plasma membrane retrieval, whereas the microtubule destabilizing herbicide oryzalin (1 μM) had no effect. Our results provide strong support for a highly localised endocytotic pathway in tobacco pollen tubes. Passive uptake of bis-Bodipy FL C11-phosphocholine by mere penetration can be excluded. It is a valuable alternative to the styryl dyes often used in endocytotic studies, and may also be used to follow lipid turnover because membrane flow of labelled membranes occurs apparently not in a default manner as ascertained by its fast distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bis-Bodipy FL C11-phosphocholine:

(1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine

β-Bodipy 581/591C5 HPC:

2-(4,4-difluoro-5-(4-phenyl 1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine

DiOC6(3):

3,3-dihexyloxacarbocyanine iodine

FM4-64:

N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridium dibromide

mitotracker RedCMXRos:

8-(4′-chloromethyl)phenyl-2,3,5,6,11, 12, 14,15-octahydro-1H, 4H, 10H13H-diquinolizino-8H-xanthylium chloride

References

  • Aniento F, Robinson DG (2005) Testing for endocytosis in plants. Protoplasma 226:3–11

    Article  PubMed  CAS  Google Scholar 

  • Atkinson HA, Daniels A, Read ND (2002) Live cell imaging of endocytosis during conidial germination in the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 37:233–244

    Article  PubMed  Google Scholar 

  • Bahaji A, Cornejo MJ, Ortiz-Zapater E, Contreras I, Aniento F (2001) Uptake of endocytic markers by rice cells: variations related to growth phase. Eur J Cell Biol 80:178–186

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  CAS  Google Scholar 

  • Barth M, Holstein SHE (2004) Identification and functional characterization of Arabidopsis AP 180, a binding partner of plant αC-adaptin. J Cell Sci 117:2051–2062

    Article  PubMed  CAS  Google Scholar 

  • Battey NH, James N, Greenland A, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659

    Article  PubMed  CAS  Google Scholar 

  • Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Plant Biol 3:67–72

    Google Scholar 

  • Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci 109:777–787

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:41–447

    Article  Google Scholar 

  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM dyes as experimental tools for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  PubMed  CAS  Google Scholar 

  • Brodski FM, Chen CY, Knuehl C, Towler MC, Wakeham DE (2001) Biological basket weaving: formation and function of clathrin coated vesicles. Annu Rev Cell Dev Biol 17:517–568

    Article  Google Scholar 

  • Cai G, del Casino C, Cresti M (2000) Cytoskeletal basis of organelle trafficking in the angiosperm pollen tube. Ann Bot 85:69–77

    Article  CAS  Google Scholar 

  • Camacho L, Malhó R (2003) Endo/exocytosis in pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Heinstein PF, Low PS (1996) Activation of phospholipase A by plant defense elicitors. Plant Physiol 110:979–986

    PubMed  CAS  Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, Dewin AHN, Pierson ES, Rongen G (1995a) Quantative analysis of the distribution of organelles in tobacco pollen tubes––implications for exocytosis and endocytosis. Protoplasma 188:67–276

    Article  Google Scholar 

  • Derksen J, Rutten T, Van Amstel T, de Win A, Doris F, Steer M (1995b) Regulation of pollen tube growth. Acta Bot Neerl 44:93–101

    Google Scholar 

  • Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC, Traas JA (1986) Coated pits and coated vesicles on the plasma membrane of plant cells. Eur J Cell Biol 41:57–64

    Google Scholar 

  • Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Galway ME, Rennie PJ, Fowke LC (1993) Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high pressure frozen/freeze-substitute protoplasts of white spruce (Piceae glauca). J Cell Sci 106:847–858

    PubMed  CAS  Google Scholar 

  • Geitman A, Emons AMC (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  Google Scholar 

  • Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Hawes C, Crooks K, Coleman J, Satiat-Jeunemaitre B (1995) Endocytosis in plants: fact or artifact? Plant Cell Environ 18:1245–1252

    Article  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Holstein SEH (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  PubMed  CAS  Google Scholar 

  • Kristen U, Kappler R (1995) The pollen tube growth test. In: O’Hara S, Atterwill CK (eds) In vitro toxicity testing protocols. Methods in Molecular Biology. vol. 43, Humana, Totawa, pp 189–198

    Google Scholar 

  • Kubitscheck U, Homann U, Thiel G (2000) Osmotically evoked shrinking of guard cell protoplasts causes retrieval of plasma membrane into cytoplasm. Planta 210:423–431

    Article  PubMed  CAS  Google Scholar 

  • Marsh M, McMahon HT (1999) The structural era of endocytosis. Science 285:215–220

    Article  PubMed  CAS  Google Scholar 

  • Meckel T, Hurst AC, Thiel G, Homann U (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1. Plant J 39:182–193

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ, Ortiz-Masia D, Anniento F (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48:757–770

    Article  PubMed  CAS  Google Scholar 

  • Paciorek T, Zazimalova E, Rudthardt N, Petrasek J, Stierhof Y-D, Klein-Vehn J, Morris DA, Emans N, Juergens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695

    PubMed  CAS  Google Scholar 

  • Parton RM, Fischer-Parton S, Trewavas AJ, Watahiki MK (2003) Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J Cell Sci 116:2707–2719

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Holk A, Scherer GFE (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phospholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J 16:601–611

    Article  CAS  Google Scholar 

  • Potocky M, Elias M, Profotova B, Novotna Z, Valentova O, Zarsky V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    PubMed  CAS  Google Scholar 

  • Quader H, Hofmann A, Schnepf E (1989) Reorganization of the endoplasmic reticulum in onion bulb scale epidermis cells after cold stress: involvement of cytoskeletal elements. Planta 177:273–280

    Article  Google Scholar 

  • Robinson DG (1996) Clathrin-mediated trafficking. Trends Plant Sci 1:349–355

    Google Scholar 

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signalling. Plant Physiol 135:1150–1161

    Article  PubMed  CAS  Google Scholar 

  • Scheele U, Holstein SEH (2002) Functional evidence for the identification of an Arabidopsis clathrin light chain polypeptide. FEBS Lett 514:355–360

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant unique novel Type Rab GTPases, functions in the endocytotic pathway of Arabidopsis thaliane. EMBO J 17:4730–4741

    Article  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, Hepler PK (2001) Actin and pollen tube growth. Protoplasma 215:64–67

    Article  PubMed  CAS  Google Scholar 

  • vom Dorp B, Scherer GF, Liedtke C, Canut H, Brightman AO, Morré DJ (1990) Identification of tonoplast fractions resolved from plasma membranes by free-flow electrophoresis using filipin-labeling and antibody to the tonoplast ATPase. Protoplasma 150:57–66

    Article  Google Scholar 

  • Yano K, Matsui S, Tsuchiya T, Maeshima M, Kutsuna N, Hasezawa S, Moriyasu Y (2004) Contribution of the plasma membrane and central vacuole in the formation of autolysosomes in cultured tobacco cells. Plant Cell Physiol 45:951–957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bundesministerium für Forschung (Grant 50WB0010 to G.S. and H.Q.). The gift of the clathrin heavy chain antibody by Prof. D.G. Robinson and the technical assistance of Mrs. E. Woelken is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Quader.

Additional information

Communicated by R. Reski.

Electronic supplementary material

Fig8

S1: Endocytotic plasma membrane retrieval: distribution of the fluorescent marker phospholipid into endomembranes . Staining of endocytotic pathway with the phospholipid bis-Bodipy FL C11-phosphocholine (excitation: blue, emission: green; (1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine) and the mitochondria with the mitotracker RedCMXRos (excitation: green, emission: red; 8-(4′-chloromethyl)phenyl-2,3,5,6,11, 12, 14,15-octahydro-1H,4H,10H13H-diquinolizino-8H-xanthylium chloride) for 30 min. Time sequence of 15 imgages taken with a confocal scanning laser microscope (Leica, TCS 4D) without moving the microscopical stage neither in z- nor in xy-direction throughout the acquisition time (3 min). Note the changes in the distribution of brightly green fluorescent large vesicle like compartments which could represent endosomes or lipid bodies, but we do not think that it concerns dictyosomes. Besides these structures the endoplasmic reticulum became labelled for the most part by the fluorescent marker phospholipid. In the very tip of the pollen tube the dynamic formation of a sheet like ER domain is recognizable. Mitochondria are visible as small orange/red fast moving compartments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisboa, S., Scherer, G.E.F. & Quader, H. Localized endocytosis in tobacco pollen tubes: visualisation and dynamics of membrane retrieval by a fluorescent phospholipid. Plant Cell Rep 27, 21–28 (2008). https://doi.org/10.1007/s00299-007-0437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0437-1

Keywords

Navigation