Skip to main content

Advertisement

Log in

Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant photosynthesis results in the production of molecular oxygen. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS) by the transfer of electrons to molecular oxygen. Plants are adequately protected by the presence of multiple antioxidative enzymes in different organelles of the plant such as chloroplasts, cytosol, mitochondria and peroxisomes. Under high light and CO2 limiting conditions caused by environmental stress like salinity, these antioxidative enzymes play an important role in scavenging toxic radicals. To investigate the functions of antioxidative enzymes in a mangrove plant, we isolated three cDNAs encoding cytosolic Cu–Zn SOD (Sod1), catalase (Cat1) and ferritin (Fer1) from Avicennia marina cDNA library. Sod1, Cat1 and Fer1 cDNA encoded full-length proteins with 152, 492 and 261 amino acids respectively. We studied the expression of these antioxidant genes in response to salt, iron, hydrogen peroxide, mannitol and light stress by mRNA expression analysis. Cat1, Fer1 showed short-term induction while Sod1 transcript was found to be unaltered in response to NaCl stress. A decrease in mRNA levels was observed for Sod1, Cat1 while Fer1 mRNA levels remained unaltered with osmotic stress treatment. Sod1, Cat1 and Fer1 mRNA levels were induced by iron, light stress and by direct H2O2 stress treatment, thus confirming their role in oxidative stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed  CAS  Google Scholar 

  • Alscher RG, Hess JL (1993) Antioxidants in higher plants. CRC Press, Boca Raton

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Adachi K, Otawa M, Yasumoto M, Fukushima Y, Kato M, Sano H, Sasamoto H, Baba S (1997) Compatible solutes and inorganic ions in the mangrove plant Avicennia marina and their effects on the activities of enzymes. Z Naturforsch 52:433–440

    CAS  Google Scholar 

  • Ashihara H, Wakahara S, Suzuki M, Kato A, Sasamoto H, Baba S (2003) Comparison of adenosine metabolism in leaves of several mangrove plants and a poplar species. Plant Physiol Biochem 41:133–139

    Article  CAS  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166(4):919–928

    Article  CAS  Google Scholar 

  • Benavente ML, Teixeira FK, Kamei CLA, Pinheiro MM (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331

    Article  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10(7):1723–1732

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  Google Scholar 

  • Briat JF, Lobreaux S, Grignon N, Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci 56:155–166

    Article  PubMed  CAS  Google Scholar 

  • Briat JF, Loisy FI, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, Wiren NV, Wuytswinkel OV (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81

    Article  CAS  Google Scholar 

  • Cataldo DA, Mc Fadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel(II), iron(II), cadmium(II) and plutonium(IV) in soybean xylem exudates. Plant Physiol 86:734–739

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant Cell Environ 20:579–588

    Article  CAS  Google Scholar 

  • Cherian S, Reddy MP (2003) Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq. Biol Plant 46(2):193–198

    Article  CAS  Google Scholar 

  • Cherian S, Reddy MP, Pandya JB (1999) Studies on salt tolerance in Avicennia marina (Forsk.) vierh. Effect of NaCl on growth, ion accumulation and enzyme activity. Indian J Plant Physiol 4(4):266–270

    CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidine thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermo tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116(4):1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  PubMed  CAS  Google Scholar 

  • Del Rio LA, Saudalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:557–580

    Article  PubMed  CAS  Google Scholar 

  • Fadzilla NM, Finch RP, Burdon RH (1997) Salinity, oxidative stress and antioxidant responses in shoot culture of rice. J Exp Bot 48:325–331

    Article  CAS  Google Scholar 

  • Fink RC, Scandalios JG (2002) Molecular evolution and structure–function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys 399(1):19–36

    Article  PubMed  CAS  Google Scholar 

  • Fukushima Y, Sasamoto H, Baba S, Ashihara H (1997) The effect of salt stress on the catabolism of sugars in leaves and roots of the mangrove plant, Avicennia marina. Z Naturforsch 52:187–192

    CAS  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22(2):87–95

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Harrison PD, Arosio P (1996) Ferritins: molecular properties, iron storage function and cellular regulation. Biochem Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Holmberg N, Bulow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3(2):61–66

    Article  Google Scholar 

  • Kampfenkel K, Van Montagu M, Inzé D (1995) Effects of iron excess on Nicotiana plumbagnifolia plants. Plant Physiol 107:725–735

    PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9(4):627–640

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118(2):637–650

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457–483

    Article  PubMed  CAS  Google Scholar 

  • Lobreaux S, Thoiron S, Briat JF (1995) Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress. Plant J 8(3):443–449

    Article  CAS  Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theory Appl Genet 110:416–424

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murgia I, Briat JF, Tarantino D, Soave C (2001) Plant ferritin accumulates in response to photoinhibition by its ectopic overexpression does not protect against photoinhibition. Plant Physiol Biochem 39:797–805

    Article  CAS  Google Scholar 

  • Naidoo G, Rogalla H, von Willert DJ (1998) Field measurements of gas exchange in Avicennia marina. Mangr Salt Marsh 2:99–107

    Article  Google Scholar 

  • Parani M, Jithesh MN, Lakshmi M, Parida A (2002) Characterization of a gene encoding ubiquitin conjugating enzyme from the mangrove species, Avicennia marina (Forsk.) Vierh. Indian J Biotechnol 1(2):164–170

    CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera paviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Pekker I, Tel-Or E, Mittler R (2002) Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidase during iron mediated oxidative stress in bean. Plant Mol Biol 49(5):429–438

    Article  PubMed  CAS  Google Scholar 

  • Pitcher LH, Zilinskas B (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110(2):583–588

    PubMed  CAS  Google Scholar 

  • Polle A (1997) Defense against photooxidative damage in plants. In: Scandalios JG (ed.) Oxidative stress and molecular biology of antioxidant defences. Cold Spring Harbor Laboratories, pp 623–666

  • Salin ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold spring harbor laboratory press, New York, USA

  • Sanchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity is present in a variety of plant species. Plant Physiol 106(4):1675–1679

    PubMed  CAS  Google Scholar 

  • Selvam V (2003) Environmental classification of mangrove wetlands of India. Curr Sci 84(6):757–765

    Google Scholar 

  • Streb P, Knauf AM, Feiraband J (1993) Preferential photo activation of catalase and photo inhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. Physiol Plant 88:590–598

    Article  CAS  Google Scholar 

  • Suzuki M, Yasumoto E, Baba S, Ashihara H (2003) Effect of salt stress on the metabolism of ethanolamine and choline in leaves of the betaine-producing mangrove species Avicennia marina. Phytochemistry 64:941–948

    Article  PubMed  CAS  Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56:289–315

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, London.

    Google Scholar 

  • Tsang EWT, Bowler WC, Herouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3(8):783–792

    Article  PubMed  CAS  Google Scholar 

  • Tuffers A, Naidoo G, von Willert DJ (2001) Low salinities adversely affect photosynthetic performance of the mangrove, Avicennia marina. Wetl Ecol Manage 9:225–232

    Article  CAS  Google Scholar 

  • Waisel Y, Eshel A, Agami M (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiol Plant 67:67–72

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M. Langebartels C, Van Montagu M (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Villarroel R, Van Montagu M, Inze D, Van Camp W (1994a) Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Lett 352(1):79–83

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Van Camp W, Van Montagu M, Inze D, Sandermann H Jr, Langebartels C (1994b) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia (L.). Plant Physiol 106:1007–1014

    PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Department of Biotechnology, Department of Atomic Energy and CSIR, India. We thank Dr. Gopalakrishnan, MSSRF, for helping in the collection of A. marina seeds. We thank Laboratorium voor Genetica, VIB, Universiteit, Gent, Belgium for providing Nicotiana plumbaginifolia Cat1 plasmid, John Cushman, Oklahoma for Mesembryanthemum crystallinum Cu–Zn SOD plasmid and Shankar, MSSRF, for Sesuvium portulacastrum rbcs plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Parida.

Additional information

Communicated by A. Altman

M.N. Jithesh, S.R. Prashanth and K.R. Sivaprakash contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jithesh, M.N., Prashanth, S.R., Sivaprakash, K.R. et al. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25, 865–876 (2006). https://doi.org/10.1007/s00299-006-0127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0127-4

Keywords

Navigation