Skip to main content
Log in

Transformation of a muskmelon ‘Galia’ hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

‘Galia’ muskmelon (Cucumis melo L. var. reticulatus Ser.) has been recalcitrant to transformation by Agrobacterium tumefaciens. Transformation of the ‘Galia’ male parental line, ‘Krymka’, with an ACC oxidase (CMACO-1) gene in antisense orientation is described herein. Explants were transformed using A. tumefaciens strain ABI, which contained a vector pCmACO1-AS plasmid, bearing an antisense gene of CMACO-1 and the CP4 syn gene (glyphosate-tolerance). Both CMACO-1 and CP4 syn genes were assessed by a polymerase chain reaction method. Flow cytometry analysis was performed to determine plant ploidy level of primary transformants. Two completely diploid independent transgenic plants were obtained. Southern blot and segregation analysis in the T1 generation determined that each independent transgenic line had one single insertion of the transgene. These transgenic muskmelon male parental lines have potential for use in the production of ‘Galia’ F1 hybrids with improved shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO-1:

ACC oxidase-1

CMACO-1:

Cucumis melo ACO-1

BA:

6-Benzylaminopurine

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog medium

References

  • Akasaka-Kennedy Y, Tomita KO, Ezura H (2004) Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci 166:763–769

    Article  CAS  Google Scholar 

  • Amor MB, Guis M, Latche A, Bouzayen M, Pech JC, Roustan JP (1998) Expression of an antisense 1-aminocyclopropane-1-carboxylate oxidase gene stimulates shoot regeneration in Cucumis melo. Plant Cell Rep 17:586–589

    Article  CAS  Google Scholar 

  • Ayub R, Guis M, BenAmor M, Gillot L, Roustan JP, Latche A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol 14:862–866

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–35

    Article  PubMed  CAS  Google Scholar 

  • Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Transgenic Res 6:41–50

    Article  PubMed  CAS  Google Scholar 

  • Bouabdallah L, Branchard M (1986) Regeneration of plants from callus cultures of Cucumis melo L. Zeitschrift Fur Pflanzenzuchtung (J Plant Breed) 96:82–85

    Google Scholar 

  • Clendennen S, Kellogg JA, Wolf KA, Matsumura W, Peters S, Vanwinkle JE, Copes B, Pieper M, Kramer MG (1999) Genetic engineering of cantaloupe to reduce ethylene biosynthesis and control ripening. In: Kanellis A, Chang C, Klee H, Bleecker AB, Pech JC Grierson D (ed) Biology and biotechnology of the plant hormone ethylene, vol. II. Kluwer Academic Publishers, Netherlands, pp 371–379

    Google Scholar 

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic-virus in squash and cantaloupe. Plant Disease 79:1107–1109

    Article  CAS  Google Scholar 

  • Colijn-Hooymans CM, Hakkert JC, Jansen J Custer JBM (1994) Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tissue Organ Culture. 39:211–217

    Article  Google Scholar 

  • Curuk S, Ananthakrishnan G, Singer S, Xia XD, Elman C, Nestel D, Cetiner S, Gaba V (2003) Regeneration in vitro from the hypocotyl of Cucumis species produces almost exclusively diploid shoots, and does not require light. Hortscience 38:105–109

    Google Scholar 

  • Debeaujon I, Branchard M (1992) Induction of somatic embryogenesis and caulogenesis from cotyledon and leaf protoplast-derived colonies of melon (Cucumis melo L). Plant Cell Rep 12:37–40

    Article  Google Scholar 

  • Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus-35s promoter in transgenic melon plants. Biotechnology 9:858–863

    Article  CAS  Google Scholar 

  • Doyle JJ Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Doyle JJ Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Edriss MH, Abou-Hadid AF El-Zeiny UAH (1996) Plant regeneration and somatic embryogenesis from shoot tip and cotyledon of Cucumis melo (Galia). In: Proceedings of the International Symposium on Strategies for Mark. Orient, Greenhouse Production, Egypt, pp 347–352

    Google Scholar 

  • Ezura H, Amagai H, Yoshioka K, Oosawa K (1992a) Efficient production of tetraploid melon (Cucumis melo L.) by somatic embryogenesis. Jpn J Breed 42:137–144

    Google Scholar 

  • Ezura H, Amagai H, Yoshioka K, Oosawa K (1992b) Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue-cultures of melon (Cucumis Melo L.). Plant Sci 85:209–213

    Article  Google Scholar 

  • Ezura H, Hitomi A, Higashi K, Sato T, Kubota M (1997) Introduction of ACC synthase antisense gene to muskmelon (Cucumis melo L. var. reticulatus). In: Abak K, Büyükalaca S (ed) First International Symposium on Cucurbits, Adana, Turkey, Abstract

  • Ezura H, Kikuta I, Oosawa K (1994) Production of aneuploid melon plants following in-vitro culture of seeds from a triploid × diploid cross. Plant Cell Tissue Organ Culture 38:61–63

    Article  Google Scholar 

  • Ezura H, Oosawa K (1994) Ploidy of somatic embryos and the ability to regenerate plantlets in melon (Cucumis melo L). Plant Cell Rep 14:107–111

    Article  CAS  Google Scholar 

  • Fang GW, Grumet R (1990) Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep 9:160–164

    Article  CAS  Google Scholar 

  • Fang GW, Grumet R (1993) Genetic-engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic-virus coat protein gene. Mol Plant Microbe Interact 6:358–367

    PubMed  CAS  Google Scholar 

  • Fassuliotis G, Nelson BV (1992) Regeneration of tetraploid muskmelons from cotyledons and their morphological differences from 2 diploid muskmelon genotypes. J Am Soc Horticult Sci 117:863–866

    Google Scholar 

  • Febres VJ, Niblett CL, Lee RF, Moore GA (2003) Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep 21:421–428

    PubMed  CAS  Google Scholar 

  • Gaba V, Kless H, Antignus (1992) Transformation of melon by particle acceleration. Suppl Plant Physiol 99:137–137

    Google Scholar 

  • Gaba V, Feldmesser E, Gal On A Kless H (1994) Genetic transformation of a recalcitrant melon (Cucumis melo L.) variety. In: Cucurbitaceae '94: evaluation and enhancement of cucurbit germplasm, South Padre Island, Texas, USA, November, p 45

    Google Scholar 

  • Gaba V, Elman C, Watad AA Gray DJ (1996) Ancymidol hastens in vitro bud development in melon. Hortscience. 31:1223–1224

    CAS  Google Scholar 

  • Gaba V, Schlarman E, Elman C, Sagee O, Watad AA Gray DJ (1999) In vitro studies on the anatomy and morphology of bud regeneration in melon cotyledons. In Vitro Cell Dev Biol Plant 35:1–7

    Article  Google Scholar 

  • Galperin M, Patlis L, Ovadia A, Wolf D, Zelcer A Kenigsbuch D (2003) A melon genotype with superior competence for regeneration and transformation. Plant Breed 122:66–69

    Article  Google Scholar 

  • Gomez-Jimenez M delC, Garcia-Olivares E Matilla AJ (2001) 1-Aminocyclopropane-1-carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Sci Res 11:243–253

    CAS  Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling KS, Namba S, Chee P, Slightom JL, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Soc Horticult Sci 119:345–355

    CAS  Google Scholar 

  • Gray D, Hiebert E, Kelley KT, Compton ME, Gaba VP (1995) Comparison of methods to transform embryogenic cotyledons of melon. Hortscience 30:788–788

    Google Scholar 

  • Guis M, Ben Amor M, Latche A, Pech JC, Roustan JP (2000) A reliable system for the transformation of cantaloupe charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci Horticult 84:91–99

    Article  CAS  Google Scholar 

  • Guis M, Roustan JP, Dogimont C, Pitrat M, Pech JC (1998) Melon biotechnology. Biotechnol Genet Eng Rev 15:289–311

    CAS  Google Scholar 

  • Guis M, Botondi R, BenAmor M, Ayub R, Bouzayen M, Pech JC, Latche A (1997) Ripening-associated biochemical traits of Cantaloupe Charentais melons expressing an antisense ACC oxidase transgene. J Am Soc Horticult Sci 122:748–751

    CAS  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Karchi Z (2000) Development of melon culture and breeding in Israel. In: Proceedings of the 7th EUCARPIA Meeting on Cucurbit Genetics and Breeding, Ma’ale Ha Hamisha, Israel, March 19–23, pp 13–17

  • Kathal R, Bhatnagar SP, Bhojwani SS (1992) Chromosome variations in the plants regenerated from leaf explants of Cucumis melo L Cv Pusa Sharbati. Caryologia 45:51–56

    Google Scholar 

  • Kintzios SE Taravira N (1997) Effect of genotype and light intensity on somatic embryogenesis and plant regeneration in melon (Cucumis melo L.). Plant Breed 116:359–362

    Article  CAS  Google Scholar 

  • Klee HJ, Clark DG (2002) Manipulation of ethylene synthesis and perception in plants: the ins and the outs. Hortscience 37:450–452

    CAS  Google Scholar 

  • Kondorosi E, Roudier F Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  PubMed  CAS  Google Scholar 

  • Lasserre E, Bouquin T, Hernandez JA, Bull J, Pech J-C Balague C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol Gen Genet 251:81–90

    PubMed  CAS  Google Scholar 

  • Lasserre E, Godard F, Bouquin T, Hernandez JA, Pech J-C, Roby D Balague C (1997) Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Mol Gen Genet 256:211–222

    Article  PubMed  CAS  Google Scholar 

  • Leshem B (1989) Polarity and responsive regions for regeneration in the cultured melon cotyledon. J Plant Physiol 135:237–239

    Google Scholar 

  • Leshem B, Ronen R Lurie S (1994a) Thidiazuron and paclobutrazol appear to mimic cytokinin and auxin influences on organ regeneration and protein profiles in cultured melon cotyledons. J Plant Physiol 143:344–348

    CAS  Google Scholar 

  • Leshem B, Ronen R, Soundry E, Lurie S Gepstein S (1994b) Cytokinin at a large range of concentrations determines rates of polypeptide metabolism and regeneration in cultured melon cotyledons. J Plant Physiol 143:330–336

    CAS  Google Scholar 

  • Martinez-Pulido C, Harry IS, Thorpe TA (1992) Optimization of bud induction in cotyledonary explants of Pinus canariensis. Plant Cell Tissue Organ Culture 29:247–255

    Article  CAS  Google Scholar 

  • Minkoff R, Bales ES, Kerr CA, Struss WE (1999) Antisense oligonucleotide blockade of connexin expression during embryonic bone formation: evidence of functional compensation within a multigene family. Dev Genet 24:4356

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nugent PE Ray DT (1992) Spontaneous tetraploid melons. Hortscience 27:47–50

    Google Scholar 

  • Quesenberry K (1995) Sample preparation for flow cytometry, 3 March 2004, http://www.biotech.ufl.edu/FlowCytometry/agronomy/intro.html

  • Raymer PL, Grey TL (2003) Challenges in comparing transgenic and nontransgenic soybean cultivars. Crop Sci 43:1584–1589

    Article  Google Scholar 

  • Richins RD, Scholthof HB, Shepherd RJ (1987) Sequence of figwort mosaic-virus DNA (Caulimovirus Group). Nucleic Acids Res 15:8451–8466

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JC Cantliffe DJ (2001) Nitrogen treatments for greenhouse Galia muskmelon (Cucumis melo L.) grown in soilless media. Hortscience. 36:589–589

    Google Scholar 

  • Saroha MK, Sridhar P, Malik VS (1998) Glyphosate®-tolerant crops: genes and enzymes. J Plant Biochem Biotechnol 7:65–72

    CAS  Google Scholar 

  • Shellie KC (2001) Reduced ethylene concentration and postharvest quality of transgenic netted melon (Cucumis melo L.) expressing S-adenosylmethionine hydrolase. Hortscience 36:467–467

    Google Scholar 

  • Silva JA, da Costa TS, Lucchetta L, Marini LJ, Zanuzo MR, Nora L, Nora FR, Twyman RM, Rombaldi CV (2004) Characterization of ripening behavior in transgenic melons expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene from apple. Postharvest Biol Technol 32:263–268

    Article  CAS  Google Scholar 

  • Smith JJ, Zhang ZH, Schofield CJ, John P, Baldwin JE (1994) Inactivation of 1-aminocyclopropane-1-carboxylate (Acc) oxidase. J Exp Bot 45:521–527

    Article  CAS  Google Scholar 

  • Vallés MP, Lasa JM (1994) Agrobacterium-mediated transformation of commercial melon (Cucumis melo L, Cv Amarillo Oro). Plant Cell Rep 13:145–148

    Article  Google Scholar 

  • Yoshioka K, Hanada K, Harada T, Minobe Y, Oosawa K (1993) Virus-resistance in transgenic melon plants that express the cucumber mosaic-virus coat protein gene and in their progeny. Jpn J Breed 43:629–634

    Google Scholar 

  • Yoshioka K, Hanada K, Nakazaki Y, Minobe Y, Yakuwa T, Oosawa K (1992) Successful transfer of the cucumber mosaic-virus coat protein gene to Cucumis melo L. Jpn J Breed 42:277–285

    Google Scholar 

Download references

Acknowledgements

This work was supported by a USDA/CBAG PL-89-106 grant. We gratefully acknowledge Dawn Bies for the technical help for the PCR assays and Brian Kevany for the Southern blot analysis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cantliffe.

Additional information

Communicated by P. Ozias-Akins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuñez-Palenius, H.G., Cantliffe, D.J., Huber, D.J. et al. Transformation of a muskmelon ‘Galia’ hybrid parental line (Cucumis melo L. var. reticulatus Ser.) with an antisense ACC oxidase gene. Plant Cell Rep 25, 198–205 (2006). https://doi.org/10.1007/s00299-005-0042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0042-0

Keywords

Navigation