Skip to main content
Log in

Changes in gene expression in maize kernel in response to water and salt stress

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Increasing pressure on limited water resources for agriculture, together with the global temperature increase, highlight the importance of breeding for drought-tolerant cultivars. A better understanding of the molecular nature of drought stress can be expected through the use of genomics approaches. Here, a macroarray of ≈2500 maize cDNAs was used for determining transcript changes during water- and salt-stress treatments of developing kernels at 15 days after pollination. Normalization of relative transcript abundances was carried out using a human nebulin control sequence. The proportions of transcripts that changed significantly in abundance upon treatment (>2-fold compared to the control) were determined; 1.5% of the sequences examined were up-regulated by high salinity and 1% by water stress. Both stresses induced 0.8% of the sequences. These include genes involved in various stress responses: abiotic, wounding and pathogen attack (abscisic acid response binding factor, glycine and proline-rich proteins, pathogenesis-related proteins, etc.). The proportion of down-regulated genes was higher than that for up-regulated genes for water stress (3.2%) and lower for salt stress (0.7%), although only eight genes, predominantly involved in energy generation, were down-regulated in both stress conditions. Co-expression of genes of unknown function under defined conditions may help in elucidating their roles in coordinating stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Bachem CWB, van de Hoeven RS, de Bruijin SM, Vreugdenhil D. Zabeau M, Visser RGF (1996) Visualization of different gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bajaj S, Targolli J, Liu L, Ho TD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5:493–503

    Article  CAS  Google Scholar 

  • Bray EA (1997) Plant response to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Cellier F, Conéjéro G, Breitler J, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116(1):319–338

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Williams SR, Vermaas EH, Storck T, Moon K, McCollum C, Mao J, Luo S, Kirchner JJ, Eletr S, Robert B, DuBridge RB, Burcham T, Albrecht G. (2000) In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc Natl Acad Sci USA 97:1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Bruce W, Folkerts O, Farnaat C, Crasta O, Roth B, Bowen B (2000) Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell 12:65–79

    Article  PubMed  CAS  Google Scholar 

  • Borrás L, Westgate ME, Otegui ME (2003) Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Ann Bot 91:857–867

    Article  PubMed  Google Scholar 

  • Cully DE, Gengenbach BG, Smith JA, Rubenstain I, Conelly JA, Park WD (1984) Endosperm protein synthesis and l-[35S]methionine incorporation in maize kernels cultured in vitro. Plant Physiol. 74:389–394

    Article  PubMed  CAS  Google Scholar 

  • Davies GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EH Jr (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172

    Google Scholar 

  • Desprez T, Amselem J, Caboche M, Höfte H (1998) Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J 14(5):43–652

    Article  Google Scholar 

  • Fernandes J, Brendel V, Gai X, Lal S, Chandler V, Elumalai R, Galbraith D, Pierson E, Walbot V (2002) Comparison of RNA expression profiles based on maize expressed sequence tag frequency analysis and micro-array hybridization. Plant Physiol 128:896–910

    Article  PubMed  Google Scholar 

  • Donovan GR, Lee JW (1977) The growth of detached wheat heads in liquid culture. Plant Sci. Lett. 9:107–113

    Article  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Grant RS, Jackson BS, Kiniry JR, Arkin GF (1989) Water deficit timing effects on yield components in maize. Agron J 81:61–65

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Nelson DE, Samaras Y, Rhodes D (1994) Tissue culture in the improvements of salt tolerance of plants. In: Yeo AR, Flowers TJ (eds) Soil mineral stress: Approaches to crop improvements. Springer-Verlag, New York, pp 83–125

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hauser NC, Vingron M, Scheideler M, Krems B, Hellmuth K, Entain KD Hoheisel JD (1998) Transcriptomal profiling profiling of all open reading frames of Saccharomyces cerrevisiae. Yeast 14:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Khavkin E, Coe E (1997) Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor Appl Gen 95:343–352

    Article  CAS  Google Scholar 

  • Kirst M, Myburg AA, Sederoff RR (2003) Genetical genomics of Eucayiptus: combining expression profiling and genetic segregation analysis. Plant and Animal Genome Conference XI, 11–15 January 2003, San Diego, CA, p 36

  • Kurth J, Varotto C, Pesaresi P, Biehl A, Richy E, Salamini F, Leister D (2002) Gene-sequence-tag expression analysis of 1800 genes related to chloroplast functions. Planta 215:101–109

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Baird WV (2003) Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Sci 43:678–687

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Lockarht DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  Google Scholar 

  • Ober ES, Setter T, Madison JT, Thompson JF, Shapiro PS (1991) Influence of water deficit on maize endosperm development. Plant Physiol 97:154–164

    PubMed  CAS  Google Scholar 

  • Outtar S, Jones RJ, Crookston RK, Kajeiuo M (1987) Effect of drought on water relations of developing maize kernels. Crop Sci 27:730–735

    Article  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Peréz-Enciso M, Toro MA, Tenenhaus M, Gianola D (2003) Combining gene expression and molecular marker information for mapping complex trait genes: a simulation study. Genetics 164:1597–1606

    PubMed  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Borchardt DC, Schafer-Pregl R, Nagl N, Glass C, Jerrsson A, Gebhardt C, Salamini F (1999) PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol Gen Genetics 262:515–524

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Talamè V, Ozturk N, Bohnert HJ, Tuberosa R (2003) Microarray analysis of transcripts abundance in barley under conditions of water deficit. Plant and Animal Genome Conference XI, 11–15. January 2003, San Diego, CA, p 15

  • Taniguchi M, Miura K, Iwao H, Yamanaka S (2001) Quantitative assessment of DNA microarrays: Comparison with Northern blot analysis. Genomics 71:34–39

    Article  PubMed  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963

    Article  PubMed  CAS  Google Scholar 

  • Umeda M, Hara C, Matsubayashi Y, Li H-H, Lio Q, Tadokoro F, Aotsuka S, Uchimiya H (1994) Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: Analysis of transcripts of genes engaged in ATP generating pathways. Plant Mol Biol. 25:469–478

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kincler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Ishitani M, Zhu J (1999) Interaction of osmotic stress, temperature and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119(1):205–212

    Article  PubMed  CAS  Google Scholar 

  • Zhu J (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Max–Planck–Gesellschaft stipendium, to V.A. and by the EU-FP5 project QLK-2000-00302, SeedDesign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Andjelkovic.

Additional information

Communicated by R. Schmidt

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andjelkovic, V., Thompson, R. Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep 25, 71–79 (2006). https://doi.org/10.1007/s00299-005-0037-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0037-x

Keywords

Navigation