Skip to main content
Log in

A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A large-scale transformation procedure handling an adequate number of stable transformants with highly efficient positive-negative selection is a necessary prerequisite to successful gene targeting by homologous recombination, as the integration of a transgene by somatic homologous recombination in higher plants has been reported to be 10-3 to 10-5 compared with random integration by non-homologous end joining. We established an efficient and large-scale Agrobacterium-mediated rice transformation protocol that generated around 103 stable transformants routinely from 150 seeds and a strong positive-negative selection procedure that resulted in survivors at 10-2 using the gene for diphtheria toxin A fragment as a negative marker. The established transformation procedure provides a basis for efficient gene targeting in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3A–C
Fig. 4
Fig. 5A-C

Similar content being viewed by others

Abbreviations

AS::

Acetosyringone

5-FU::

5-Fluorouracil

FW::

Fresh weight

GT::

Gene targeting

HR::

Homologous recombination

NHEJ::

Non-homologous end joining

References

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    CAS  Google Scholar 

  • Alt-Moerbe J, Neddermann P, von Lintig J, Weiler EW, Schroeder J (1988) Temperature-sensitive step in Ti plasmid vir-region induction and correlation with cytokinin secretion by Agrobacteria. Mol Gen Genet 213:1–8

    CAS  Google Scholar 

  • Andersen L, Kilstrup M, Neuhard J (1989) Pyrimidine, purine and nitrogen control of cytosine deaminase synthesis in Escherichia coli K 12. Involvement of the glnLG and purR genes in the regulation of codA expression. Arch Microbiol 152:115–118

    CAS  PubMed  Google Scholar 

  • Bilang R, Iida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100:247–250

    CAS  PubMed  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR (2001) Generating mice with targeted mutations. Nat Med 7:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 Bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    CAS  PubMed  Google Scholar 

  • Czako M, An G (1991) Expression of DNA coding for diphtheria toxin chain A is toxic to plant cells. Plant Physiol 95:687–692

    CAS  Google Scholar 

  • Gallego ME, Sirand-Pugnet P, White CI (1999) Positive-negative selection and T-DNA stability in Arabidopsis transformation. Plant Mol Biol 39:83–93

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    CAS  Google Scholar 

  • Gierl A, Schwarz-Sommer Z, Saedler H (1985) Molecular interactions between the components of the En-I transposable element system of Zea mays. EMBO J 4:579–583

    CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    CAS  PubMed  Google Scholar 

  • Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6:157–162

    Article  CAS  PubMed  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    CAS  PubMed  Google Scholar 

  • Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51–53

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hyper-virulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Kempin SA, Liljegren SJ, Block LM, Rounsley SD, Yanofsky MF, Lam E (1997) Targeted disruption in Arabidopsis. Nature 389:802–803

    Article  CAS  PubMed  Google Scholar 

  • Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352

    CAS  PubMed  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′-region for use in monocot transformation. Mol Gen Genet 231:150–160

    CAS  PubMed  Google Scholar 

  • Nakamura LT, Wisnieski BJ (1990) Characterization of the deoxyribonuclease activity of diphtheria toxin. J Biol Chem 265:5237–5241

    CAS  PubMed  Google Scholar 

  • Offringa R, Hooykaas P (1995) Gene targeting in plants. In: Vega, MA (ed) Gene targeting in plants. CRC Press, Boca Raton, pp 84–121

  • Pappenheimer AMJ (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13:331–339

    Article  CAS  Google Scholar 

  • Takimoto I, Christensen AH, Quail PH, Uchimiya H, Toki S (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants. Plant Mol Biol 26:1007–1012

    CAS  PubMed  Google Scholar 

  • Tanaka A, Mita S, Ohta S, Kyozuka J, Shimamoto K, Nakamura K (1990) Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res 18:6767–6770

    CAS  PubMed  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Thykjaer T, Finnemann J, Schauser L, Christensen L, Poulsen C, Stougaard J (1997) Gene targeting approaches using positive-negative selection and large flanking regions. Plant Mol Biol 35:523–530

    Article  CAS  PubMed  Google Scholar 

  • Vergunst AC, Hooykaas PJJ (1999) Recombination in the plant genome and its application in biotechnology. Crit Rev Plant Sci 18:1–31

    Article  CAS  Google Scholar 

  • Wang HX, Viret J-F, Eldridge A, Perera R, Signer ER, Chiurazzi M (2001) Positive-negative selection for homologous recombination in Arabidopsis. Gene 272:249–255

    Article  CAS  PubMed  Google Scholar 

  • Yagi T, Ikawa Y, Yoshida K, Shigetani Y, Takeda N, Mabuchi I, Yamamoto T, Aizawa S (1990) Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc Natl Acad Sci USA 87:9918–9922

    CAS  PubMed  Google Scholar 

  • Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250

    CAS  PubMed  Google Scholar 

  • Yanagawa Y, Kobayashi T, Ohnishi M, Kobayashi T, Tamura S, Tsuzuki T, Sanbo M, Yagi T, Tashiro F, Miyazaki J (1999) Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgen Res 8:215–221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yoshishige Inagaki and Hong-Qing Li for their construction of the plasmids and for their helpful discussion. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Iida.

Additional information

Communicated by H. Ebinuma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, R., Asao, H. & Iida, S. A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep 22, 653–659 (2004). https://doi.org/10.1007/s00299-003-0752-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0752-0

Keywords

Navigation