Skip to main content
Log in

Correlation between P2X7 receptor gene polymorphisms and gout

  • Review Article - Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Not all patients with hyperuricemia will develop acute gouty arthritis, indicating that other initiating factors need to be considered. The P2X7 receptor is an adenosine triphosphate-gated nonselective cation channel that has also been suggested to be a proinflammatory receptor. In the immune system, the P2X7 receptor is involved in the processing and release of various proinflammatory cytokines, including interleukin-1β (IL-1β), IL-18 and tumor necrosis factor-α (TNF-α). IL-1β is a central cytokine in the initiation of the acute inflammatory response, which plays a key role in the pathogenesis of gout and the pathology of acute gouty arthritis. This review will explore single-nucleotide polymorphisms in the P2X7R gene [including rs1718119 (Ala348Thr), rs208294 (His155Tyr), rs3751143 (Glu496Ala), rs28360457 (Arg307Gln) and rs2230911 (Thr357Ser)] and their correlation with the incidence of gout. We conclude that P2X7R gene polymorphisms impact the secretion of IL-1β and thus play a vital role in the pathogenesis of gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson PC, Horsburgh S (2014) Gout: joints and beyond, epidemiology, clinical features, treatment and co-morbidities. Maturitas 78(4):245–251

    Article  PubMed  Google Scholar 

  2. Tao JH, Zhang Y, Li XP (2013) P2X7R: a potential key regulator of acute gouty arthritis. Semin Arthritis Rheum 43(3):376–380

    Article  CAS  PubMed  Google Scholar 

  3. Ferrari D, Pizzirani C, Adinolfi E et al (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883

    Article  CAS  PubMed  Google Scholar 

  4. Kingsbury SR, Conaghan PG, McDermott MF (2011) The role of the NLRP3 inflammasome in gout. J Inflamm Res 4:39–49

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Steiger S, Harper JL (2014) Mechanisms of spontaneous resolution of acute gouty inflammation. Curr Rheumatol Rep 16(1):392

    Article  PubMed  Google Scholar 

  6. Van den Berg WB (2000) Arguments for interleukin 1 as a target in chronic arthritis. Ann Rheum Dis 59(Suppl 1):i81–i84

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rock KL, Latz E, Ontiveros F et al (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rock KL, Kataoka H, Lai JJ (2013) Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 9(1):13–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pope RM, Tschopp J (2007) The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis Rheum 56(10):3183–3188

    Article  CAS  PubMed  Google Scholar 

  10. Martinon F (2010) Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 233(1):218–232

    Article  CAS  PubMed  Google Scholar 

  11. Terkeltaub RA, Schumacher HR, Carter JD et al (2013) Rilonacept in the treatment of acute gouty arthritis: a randomized, controlled clinical trial using indomethacin as the active comparator. Arthritis Res Ther 15(1):R25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schlesinger N, Alten RE, Bardin T et al (2012) Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis 71(11):1839–1848

    Article  CAS  PubMed  Google Scholar 

  13. Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacology 56(1):208–215

    Article  CAS  PubMed  Google Scholar 

  14. Chataigneau T, Lemoine D, Grutter T (2013) Exploring the ATP-binding site of P2X receptors. Front Cell Neurosci 7:273

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rumney RM, Wang N, Agrawal A et al (2012) Purinergic signalling in bone. Front Endocrinol (Lausanne) 3:116

    Google Scholar 

  16. Gever JR, Cockayne DA, Dillon MP et al (2006) Pharmacology of P2X channels. Pflugers Arch 452(5):513–527

    Article  CAS  PubMed  Google Scholar 

  17. Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2(56):pe6

    Article  PubMed  Google Scholar 

  18. Eleftheriadis T, Pissas G, Karioti A et al (2013) Uric acid induces caspase-1 activation, IL-1β secretion and P2X7 receptor dependent proliferation in primary human lymphocytes. Hippokratia 17(2):141–145

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Alves LA, Bezerra RJ, Faria RX et al (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18(9):10953–10972

    Article  CAS  PubMed  Google Scholar 

  20. Kvist TM, Schwarz P, Jørgensen NR (2014) The P2X7 receptor: a key player in immune-mediated bone loss? Sci World J 2014:954530. doi:10.1155/2014/954530

    Article  Google Scholar 

  21. Lenertz LY, Gavala ML, Zhu Y et al (2011) Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions. Immunol Res 50(1):22–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Andrei C, Margiocco P, Poggi A et al (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: implications for inflammatory processes. Proc Natl Acad Sci USA 101(26):9745–9750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Skaper SD (2011) Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 10(1):44–56

    Article  CAS  PubMed  Google Scholar 

  24. Stokes L, Fuller SJ, Sluyter R et al (2010) Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1beta secretion. FASEB J 24(8):2916–2927

    Article  CAS  PubMed  Google Scholar 

  25. Cabrini G, Falzoni S, Forchap SL et al (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175(1):82–89

    Article  CAS  PubMed  Google Scholar 

  26. Gu BJ, Zhang W, Worthington RA et al (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276(14):11135–11142

    Article  CAS  PubMed  Google Scholar 

  27. Wesselius A, Bours MJ, Arts IC et al (2012) The P2X(7) loss-of-function Glu496Ala polymorphism affects ex vivo cytokine release and protects against the cytotoxic effects of high ATP-levels. BMC Immunol 13:64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Shemon AN, Sluyter R, Fernando SL et al (2006) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281(4):2079–2086

    Article  CAS  PubMed  Google Scholar 

  29. Gu BJ, Sluyter R, Skarratt KK et al (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279(30):31287–31295

    Article  CAS  PubMed  Google Scholar 

  30. Roger S, Mei ZZ, Baldwin JM et al (2010) Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J Psychiatr Res 44(6):347–355

    Article  PubMed  Google Scholar 

  31. Amaral FA, Costa VV, Tavares LD et al (2012) NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout. Arthritis Rheum 64(2):474–484

    Article  CAS  PubMed  Google Scholar 

  32. Portales-Cervantes L, Niño-Moreno P, Doníz-Padilla L et al (2010) Expression and function of the P2X(7) purinergic receptor in patients with systemic lupus erythematosus and rheumatoid arthritis. Hum Immunol 71(8):818–825

    Article  CAS  PubMed  Google Scholar 

  33. Sorge RE, Trang T, Dorfman R et al (2012) Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med 18(4):595–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Qy., Chen, Y. Correlation between P2X7 receptor gene polymorphisms and gout. Rheumatol Int 35, 1307–1310 (2015). https://doi.org/10.1007/s00296-015-3258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-015-3258-5

Keywords

Navigation