Skip to main content
Log in

The effect of different treatment time of millimeter wave on chondrocyte apoptosis, caspase-3, caspase-8, and MMP-13 expression in rabbit surgically induced model of knee osteoarthritis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The aim of this study is to observe the effect of different treatment time of millimeter wave (MMW) on chondrocyte apoptosis, caspase-3, caspase-8, and matrix metalloproteinase-13 (MMP-13) in rabbit knee osteoarthritis induced by anterior cruciate ligament transection (ACLT). Thirty-two New Zealand White rabbits were randomly assigned into 4 groups: millimeter wave treatment for 20-min group (MWT20); millimeter wave treatment for 40-min group (MWT40); model control group (MC) and normal control group (NC). All groups received anterior cruciate ligament transection in the right knee except NC group. Six weeks after transection, the MWT20 group and MWT40 group were given millimeter wave (MMW) at 37.5 GHz frequency, 8 mm wavelength, and 10 mW/cm2 power for 20 and 40 min, respectively, for 10 days. Eight weeks after transection, all animals were killed. Modified Mankin Score was assessed for histological assessment. Chondrocytes apoptosis was tested by the TUNEL assessment, and the expressions of related proteins were tested by the immunohistochemistry observation and Western blot. The modified Mankin Score, the chondrocyte apoptosis, and the expression of caspase-3 and MMP-13 in MWT40 group were significantly lower than those in MC group. Only a decreasing trend of modified Mankin Score and caspase-3 and MMP-13 expression was found in MWT20 group. The caspase-8 expression of the treatment groups was lower than model control group and higher than normal control group, but no significant difference was found. This study revealed MWT40 had a better therapeutic benefit to osteoarthritis cartilage structure, decreased the apoptosis of chondrocyte, and caspase-3 and MMP-13 expression compared to MWT20. But only a decreasing trend of caspase-8 expression was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steven B, Abramson MA (2009) Developments in the scientific understanding of osteoarthritis. Arthr Res Ther 11(3):227. doi:10.1186/ar2655

    Article  Google Scholar 

  2. Aigner T, Sachse A, Gebhard PM, Roach HI (2006) Osteoarthritis: pathobiology—targets and ways for therapeutic intervention. Adv Drug Deliv Rev 58(2):128–149. doi:10.1016/j.addr.2006.01.020

    Article  PubMed  CAS  Google Scholar 

  3. Kim HA, Lee YJ, Seong SC, Choe KW, Song YW (2000) Apoptotic chondrocyte death in human osteoarthritis. J Rheumatol 27:455–462

    PubMed  CAS  Google Scholar 

  4. Goggs R (2003) Apoptosis and the loss of chondrocyte survival signals contribute to articular cartilage degradation in osteoarthritis. Vet J 166(2):140–158. doi:10.1016/s1090-0233(02)00331-3

    Article  PubMed  CAS  Google Scholar 

  5. Toddallen R, Robertson C, Harwood F, Sasho T, Williams S et al (2004) Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling chondrocyte apoptosis. Osteoarthr Cartil 12(11):917–923. doi:10.1016/j.joca.2004.08.003

    Article  CAS  Google Scholar 

  6. Knäuper V, López-Otín C, Smith B, Knight G, Murphy G (1996) Biochemical characterization of human collagenase-3. J Biochem Chem 271:1544–1550. doi:10.1074/jbc.271.3.1544

    Google Scholar 

  7. Lynne C, Tetlow DJA, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthr Rheum 44(3):585–594. doi:10.1002/1529-0131(200103)

    Article  Google Scholar 

  8. Rojavin MA, Ziskin MC (1998) Medical application of millimetre waves. Q J Med 91:57–66

    Article  CAS  Google Scholar 

  9. Radzievsky AA, Rojavin MA, Cowan A, Ziskin MC (1999) Suppression of pain sensation caused by millimeter waves: a double-blinded, cross-over, prospective human volunteer study. Anesth Analg 88(4):836–840

    PubMed  CAS  Google Scholar 

  10. Xiao-Feng P, Anying Z (2003) Mechanism of thermally biological effects of the millimeter waves and its properties. Int J Infrared Millim Waves 24(11):1899–1912. doi:10.1023/A:1026383305982

    Article  Google Scholar 

  11. Szabo I, Kappelmayer J, Alekseev SI, Ziskin MC (2006) Millimeter waves induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 27(3):233–244. doi:10.1002/bem.20202

    Article  PubMed  CAS  Google Scholar 

  12. Li X, Du M, Liu X, Chen W, Wu M, Lin J, Wu G (2010) Millimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin A. Int J Mol Med 26(1):77–84

    PubMed  Google Scholar 

  13. Wu G-W, Lu X–X, Wu M-X, Zhao J-Y, Chen W-L, Lin R-H, Lin J-M (2009) Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes. Int J Mol Med 23(4):461–467

    PubMed  CAS  Google Scholar 

  14. Pang XF, Anying Z (2004) Mechanism and properties of non-thermally biological effect of the millimeter waves. Int J Infrared Millim Waves 25(3):531–552

    Article  CAS  Google Scholar 

  15. Sinotova OA, Novoselova EG, Glushkova OV, Fesenko EE (2004) A comparison of the effects of millimeter and centimeter waves on tumor necrosis factor production in mouse cells. Biofizika 49(3):545–550

    PubMed  CAS  Google Scholar 

  16. Li X, Du M, Liu X, Wu M, Ye H, Lin J, Chen W, Wu G (2010) Millimeter wave treatment inhibits NO-induced apoptosis of chondrocytes through the p38MAPK pathway. Int J Mol Med 25(3):393–399

    PubMed  CAS  Google Scholar 

  17. Usichenko TI, Herget HF (2003) Treatment of chronic pain with millimetre wave therapy (MWT) in patients with diffuse connective tissue diseases: a pilot case series study. Eur J Pain 7(3):289–294. doi:10.1016/S1090-3801(02)00125-8

    Article  PubMed  Google Scholar 

  18. Yip YB, Tse HMS, Wu KK (2007) An experimental study comparing the effects of combined transcutaneous acupoint electrical stimulation and electromagnetic millimeter waves for spinal pain in Hong Kong. Complement Ther Clin Pract 13(1):4–14. doi:10.1016/j.ctcp.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  19. Usichenko TI, Edinger H, Witstruck T, Pavlovic D, Zach M, Lange J et al (2008) Millimetre wave therapy for pain relief after total knee arthroplasty: a randomised controlled trial. Eur J Pain 12(5):617–623. doi:10.1016/j.ejpain.2007.10.004

    Article  PubMed  Google Scholar 

  20. Laverty S, Girard CA, Williams JM, Hunziker EB, Pritzker KP (2010) The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthr Cartil 18:53–65. doi:10.1016/j.joca.2010.05.029

    Article  Google Scholar 

  21. Mankin HJ, Dorfman H, Lippiello L et al (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg 53:523–537

    PubMed  CAS  Google Scholar 

  22. Lee YJ, Park JA, Yang SH, Kim KY, Kim BK, Lee EY, Lee EB, Seo J-W, Echtermeyer F, Pap T (2010) Evaluation of osteoarthritis induced by treadmill-running exercise using the modified Mankin and the new OARSI assessment system. Rheumatol Int 23:5–7. doi:10.1007/s00296-010-1520-4

    Google Scholar 

  23. Usichenko T, Edinger H, Gizhko V, Lehman C, Wendt M et al (2006) Low-intensity electromagnetic millimeter waves for pain therapy. Evidence Based Complement Altern Med 3(2):201–207. doi:10.1093/ecam/nel012

    Article  Google Scholar 

  24. International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522

    Google Scholar 

  25. Andrei G, Pakhomov YA, Pakhomova ON, Stuck BE, Murphy MR (1998) Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 19(7):393–413. doi:10.1002/(SICI)1521-186X(1998)

    Article  Google Scholar 

  26. Robertson CM, Pennock AT, Harwood FL, Pomerleau AC, Allen RT et al (2006) Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits. Osteoarthr Cartil 14:471–476. doi:10.1016/j.joca.2005.11.010

    Article  PubMed  CAS  Google Scholar 

  27. Yoshioka M, Coutts RD, Amiel D, Hacker SA (1996) Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthr Cartil 4(2):87–98. doi:10.1016/S1063-4584(05)80318-8

    Article  PubMed  CAS  Google Scholar 

  28. Li X, Wu G, Wu M, Chen W, Liu X (2011) In vitro study of inhibitory millimeter wave treatment effects on the TNF-a-induced NF-B signal transduction pathway. Int J Mol Med 27(1):71–78

    PubMed  Google Scholar 

  29. Szabo I, Alekseev SI, Acs G, Radzievsky AA, Logani MK, Makar VR, Gordiienko OR, Ziskin MC (2004) Destruction of cutaneous melanoma with millimeter wave hyperthermia in mice. IEEE Trans Plasma Sci 32(4):1653–1660. doi:10.1109/TPS.2004.830957

    Article  Google Scholar 

  30. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(12):770–776

    Article  PubMed  CAS  Google Scholar 

  31. Wu M, H-F Ding, Fisher DE (2001) Apoptosis: molecular mechanisms. Encycl Life Sci 1–8. doi: 10.1038/npg.els.0001150

  32. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA et al (1996) Cloning, expression, and type ii collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97(3):761–768. doi:10.1172/JCI118475

    Article  PubMed  CAS  Google Scholar 

  33. Thomas CM, Fuller CJ, Whittles CE, Sharif M (2007) Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthr Cartil 15(1):27–34. doi:10.1016/j.joca.2006.06.012

    Article  PubMed  CAS  Google Scholar 

  34. Tonomura HTK, Mazda O et al (2008) Effects of heat stimulation via microwave applicator on cartilage matrix gene and HSP70 expression in the rabbit knee joint. J Orthop Res 26(1):34–41. doi:10.1002/jor.20421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by the National Natural Science Foundation of China (No. 306722151).

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Qi He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Luo, QL., Lin, HD. et al. The effect of different treatment time of millimeter wave on chondrocyte apoptosis, caspase-3, caspase-8, and MMP-13 expression in rabbit surgically induced model of knee osteoarthritis. Rheumatol Int 32, 2847–2856 (2012). https://doi.org/10.1007/s00296-011-2080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-011-2080-y

Keywords

Navigation