Skip to main content
Log in

Regulation of conidiation and antagonistic properties of the soil-borne plant beneficial fungus Trichoderma virens by a novel proline-, glycine-, tyrosine-rich protein and a GPI-anchored cell wall protein

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Trichoderma spp. are widely used as commercial biofungicides, and most commercial formulations are conidia based. Identification of genes that regulate conidiation would thus be of help in genetic reprogramming of these species to optimize sporulation. In this study, we constructed an SSH (suppression subtractive hybridization) library from RNA samples of the wild type strain and a non-conidiating mutant, M7, grown under constant illumination for 2 days. We identified several genes that are underexpressed in the mutant. Some of these genes are related to secondary metabolism, and a few could be associated with conidiation. Genes coding for the following proteins, among others, were identified: O-methyl transferase, ATPase, alpha/beta-hydrolase, WD repeat containing protein, dehydrogenase, thioesterase, translationally controlled tumour protein, and a proline–glycine–tyrosine-rich protein (PGYRP) that has been annotated in T.reesei as a signalling protein. Two of these genes, encoding Pgy1, a novel PGYRP, and Ecm33, a GPI-anchored cell wall protein, were further studied in detail by generation of deletion mutants. We demonstrate here that both these genes not only regulate radial growth and conidiation in Trichoderma virens, but are also involved in antagonism against soil-borne wide host range plant pathogens. Furthermore, deletion of ecm33 affected hydrophobicity and cell wall integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bansal R, Sherkhane PD, Oulkar D, Khan Z, Banerjee K, Mukherjee PK (2018) The viridin biosynthesis gene cluster of Trichoderma virens and its conservancy in the bat white-nose fungus Pseudogymnoascus destructans. Chem Sel 3:1289–1293

    CAS  Google Scholar 

  • Casas-Flores S, Herrera-Estrella A (2013) The influence of light on the biology of Trichoderma. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma biology and applications. CABI, Wallingford, pp 43–66

    Chapter  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Bibbins M, Ponce-Noyola P, Herrera-Estrella A (2004) BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–3569

    Article  CAS  PubMed  Google Scholar 

  • Castellanos F, Schmoll M, Martinez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU (2010) Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47:468–476

    Article  CAS  PubMed  Google Scholar 

  • Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C, Prevost MC, Calderone R, Latge JP (2006) Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl Env Microbiol 72:3259–3267

    CAS  Google Scholar 

  • Chang PK, Zhang Q, Scharfenstein L, Mack B, Yoshimi A, Miyazawa K, Abe K (2018) Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection. Appl Microbiol Biotechnol 102:5209–5220

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhu J, Ying SH, Feng MG (2014) The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence. Appl Microbiol Biotechnol 98:5517–5529

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Esquivel-Naranjo EU, Herrera-Estrella A (2007) Enhanced responsiveness and sensitivity to blue light by blr-2 overexpression in Trichoderma atroviride. Microbiology 153:3909–3922

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Peng H, Liang S (2011) Molecular analysis of the PGYRP (proline-, glycine- and tyrosine-rich protein) gene family in soybean. Mol Biol Rep 38:2739–2750

    Article  CAS  PubMed  Google Scholar 

  • Gil-Bona A, Monteoliva L, Gil C (2015) Global proteomic profiling of the secretome of Candida albicans ecm33 cell wall mutant reveals the involvement of ecm33 in sap2 secretion. J Prot Res 14:4270–4281

    Article  CAS  Google Scholar 

  • Gil-Bona A, Reales-Calderon JA, Parra-Geraldo CM, Martinez-Lopez R, Monteoliva L, Gil C (2016) The cell wall protein Ecm33 of Candida albicans is involved in chronological life span, morphogenesis, cell wall regeneration, stress tolerance, and host-cell interaction. Front Microbiol p7. https://doi.org/10.3389/fmicb.2016.00064

  • Kumar A, Scher K, Mukherjee M, Pardovitz-Kedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA (2010) Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Bioch Biophys Res Comm 398:765–770

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lopez R, Park H, Myers CL, Gil C, Filler SG (2006) Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Euk Cell 5:140–147

    Article  CAS  Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, García JM, Olmedo-Monfil V, Cortes C, Kenerley CM, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100:15965–15970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Mendoza A, Rosales-Saavedra T, Cortes C (2007) The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology 153:2137–2147

    Article  CAS  PubMed  Google Scholar 

  • Mikus M, Hatvani L, Neuhof T, Komon-Zelazowska M, Dieckmann R, Schwecke T, Druzhinina IS, VonDohren H, Kubicek CP (2009) Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis. Appl Env Microbiol 75:3222–3229

    Article  CAS  Google Scholar 

  • Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Env Microbiol 76:2345–2352

    Article  CAS  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2003) TmkA, a mitogen activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Euk Cell 2:446–455

    Article  CAS  Google Scholar 

  • Mukherjee M, Horwitz BA, Sherkhane PD, Hada R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signaling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Sampath Kumar A, Kranthi S, Mukherjee PK (2014) Biocontrol potential of three novel Trichoderma strains: isolation, evaluation and formulation. 3 Biotech 4:275–281. https://doi.org/10.1007/s13205-013-0150-4

    Article  CAS  PubMed  Google Scholar 

  • Pachauri S, Chatterjee S, Kumar V, Mukherjee PK (2019) A dedicated glyceraldehyde-3-phosphate dehydrogenase is involved in the biosynthesis of volatile sesquiterpenes in Trichoderma virens—evidence for the role of a fungal GAPDH in secondary metabolism. Curr Genet 65:243–252. https://doi.org/10.1007/s00294-018-0868-y

    Article  CAS  PubMed  Google Scholar 

  • Pardo M, Monteoliva L, Vázquez P, Martinez R, Molero G, Nombela C, Gil C (2004) PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150:4157–4170

    Article  CAS  PubMed  Google Scholar 

  • Romano J, Nimrod G, Ben-Tal N, Shadkchan Y, Baruch K, Sharon H, Osherov N (2006) Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology 152:1919–1928

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Saavedra T, Esquivel-Naranjo EU, Martinez-Hernandez P, Ibarra-Laclette E, Cortes-Penagos C, Herrera-Estrella A (2006) Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152:3305–3317

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakamoto M, Tomita R, Kobayashi K (2009) A protein containing an XYPPX repeat and a C2 domain is associated with virally induced hypersensitive cell death in plants. FEBS Lett 583:2552–2556

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgio L, Strumbo B, Tenchini ML, Malcovati M, Ronchi S, Simonic T (2004) A novel Chlamydomonas reinhardtii gene potentially encoding a proline-, glycine-, and tyrosine-rich protein (PGYRP). Plant Sci 167:519–526

    Article  CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Ray S, Bisen K, Keswani C, Upadhyay RS, Sarma BK, Singh HB (2017) Unravelling the dual applications of Trichoderma spp. as biopesticide and biofertilizer. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, Wallingford, pp 364–374

    Chapter  Google Scholar 

  • Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A (2010) Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiology 156:2887–2900

    Article  CAS  PubMed  Google Scholar 

  • Steyaert JM, Weld RJ, Mendoza-Mendoza A, Krystofova S, Simkovic M, Varecka L, Stewart A (2013) Asexual development in Trichoderma: From conidia to chlamydospores. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma biology and applications. CABI, Wallingford, pp 88–110

    Google Scholar 

  • Takada H, Nishida A, Domae M, Kita A, Yamano Y, Uchida A, Ishiwata S, Fang Y, Zhou X, Masuko T, Kinoshita M, Kakehi K, Sugiura R (2010) The cell surface protein gene ecm33+ is a target of the two transcription factors Atf1 and Mbx1 and negatively regulates Pmk1 MAPK cell integrity signalling in fission yeast. Mol Biol Cell 21:674–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venancio TM, Aravind L (2010) CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics 26:149–152

    Article  CAS  PubMed  Google Scholar 

  • Verzili D, Zamparelli C, Mattei B, Noegel AA, Chiancone E (2000) The sorcin annexin VII calcium-dependent interaction requires the sorcin N-terminal domain. FEBS Lett 471:197–200

    Article  CAS  PubMed  Google Scholar 

  • Williams KE, Jiang J, Ju J, Olsen DR (2008) Novel strategies for increased copy number and expression of recombinant human gelatin in Pichia pastoris with two antibiotic markers. Enzyme Microbial Technol 43: 31–34. https://doi.org/10.1016/j.enzmictec.2008.03.013

    Article  CAS  Google Scholar 

  • Xu Y, Yu Z, Zhang D, Huang J, Wu C, Yang G, Yan K, Zhang S, Zheng C (2018) CYSTM, a novel non-secreted cysteine-rich peptide family, involved in environmental stresses in Arabidopsis thaliana. Plant Cell Physiol 59:423–438. https://doi.org/10.1093/pcp/pcx202

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving Genes and Proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

Download references

Acknowledgements

Part of the work was carried out under an India–Israel joint project on genomics funded by the Department of Biotechnology, Government of India, and the Ministry of Science, Israel. The authors thank Dr. V.P. Venugopalan, Head, Nuclear Agriculture and Biotechnology Division for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun K. Mukherjee.

Additional information

Communicated by M. Kupiec.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, R., Mukherjee, M., Horwitz, B.A. et al. Regulation of conidiation and antagonistic properties of the soil-borne plant beneficial fungus Trichoderma virens by a novel proline-, glycine-, tyrosine-rich protein and a GPI-anchored cell wall protein. Curr Genet 65, 953–964 (2019). https://doi.org/10.1007/s00294-019-00948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00948-0

Keywords

Navigation