Skip to main content

Advertisement

Log in

Structure–function relationships of the Mre11 protein in the control of DNA end bridging and processing

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The evolutionarily conserved Mre11–Rad50–Xrs2 (MRX) complex cooperates with the Sae2 protein in initiating resection of DNA double-strand breaks (DSBs) and in maintaining the DSB ends tethered to each other for their accurate repair. How these MRX–Sae2 functions contribute to DNA damage resistance is not understood. By taking advantage of mre11 alleles that suppress the hypersensitivity of sae2∆ cells to genotoxic agents, we have recently found that Mre11 can be divided in two structurally distinct domains that support resistance to genotoxic agents by mediating different processes. While the Mre11 N-terminal domain impacts on the resection activity of long-range resection nucleases by mediating MRX and Tel1/ATM association to DNA DSBs, the C-terminus influences the MRX-tethering activity by its virtue to interact with Rad50. Given the evolutionary conservation of the MRX complex, our results have implications for understanding the consequences of its dysfunctions in human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bonetti D, Villa M, Gobbini E, Cassani C, Tedeschi G et al (2015) Escape of Sgs1 from Rad9 inhibition reduces the requirement for Sae2 and functional MRX in DNA end resection. EMBO Rep 16:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannavo E, Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature 514:122–125

    Article  CAS  PubMed  Google Scholar 

  • Cannavo E, Cejka P, Kowalczykowski SC (2013) Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11–Rad50–Xrs2 to DNA end resection. Proc Natl Acad Sci USA 110:E1661-1668

    Article  Google Scholar 

  • Cassani C, Gobbini E, Vertemara J, Wang W, Marsella A et al (2018) Structurally distinct Mre11 domains mediate MRX function in resection, end-tethering and DNA damage resistance. Nucleic Acids Res 46:2990–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S et al (2010) DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature 467:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Donnianni RA, Handa N, Deng SK, Oh J et al (2015) Sae2 promotes DNA damage resistance by removing the Mre11–Rad50–Xrs2 complex from DNA and attenuating Rad53 signalling. Proc Natl Acad Sci USA 112:E1880-1887

    Google Scholar 

  • Clerici M, Mantiero D, Lucchini G, Longhese MP (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280:38631–38638

    Article  CAS  PubMed  Google Scholar 

  • Clerici M, Mantiero D, Lucchini G, Longhese MP (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7:212–218

    Article  CAS  PubMed  Google Scholar 

  • Daley JM, Gaines WA, Kwon Y, Sung P (2014) Regulation of DNA pairing in homologous recombination. Cold Spring Harb Perspect Biol 6:a017954

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R et al (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135

    Article  PubMed  Google Scholar 

  • Deshpande RA, Williams GJ, Limbo O, Williams RS, Kuhnlein J et al (2014) ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling. EMBO J 33:482–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durdíková K, Chovanec M (2017) Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 63:591–605

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M, Dibitetto D, De Gregorio G, Eapen VV, Rawal CC et al (2015) Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLoS Genet 11:e1004928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia V, Phelps SE, Gray S, Neale MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbini E, Villa M, Gnugnoli M, Menin L, Clerici M et al (2015) Sae2 function at DNA double-strand breaks is bypassed by dampening Tel1 or Rad53 activity. PLoS Genet 11:e1005685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbini E, Cassani C, Villa M, Bonetti D, Longhese MP (2016) Functions and regulation of the MRX complex at DNA double-strand breaks. Microb Cell 3:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohl M, Kwon Y, Galván SM, Xue X, Tous C et al (2011) The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nat Struct Mol Biol 18:1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP et al (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    Article  CAS  PubMed  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T et al (2002) The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    Article  CAS  PubMed  Google Scholar 

  • Ira G, Haber JE (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22:6384–6392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinks-Robertson S, Michelitch M, Ramcharan S (1993) Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13:3937–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE et al (2004) DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14:2096–2106

    Article  CAS  PubMed  Google Scholar 

  • Lammens K, Bemeleit DJ, Möckel C, Clausing E, Schele A et al (2011) The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145:54–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Paull TT (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26:7741–7748

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Zhang Y, Lee SE (2008) Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature 454:543–546

    Article  CAS  PubMed  Google Scholar 

  • Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O (2018) Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Curr Genet 64:697–712

    Article  CAS  PubMed  Google Scholar 

  • Lim HS, Kim JS, Park YB, Gwon GH et al (2011) Crystal structure of the Mre11–Rad50-ATPγS complex: understanding the interplay between Mre11 and Rad50. Genes Dev 25:1091–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6:a016428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimitou EP, Symington LS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774

    Article  CAS  PubMed  Google Scholar 

  • Möckel C, Lammens K, Schele A, Hopfner KP (2012) ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res 40:914–927

    Article  CAS  PubMed  Google Scholar 

  • Moncalian G, Lengsfeld B, Bhaskara V, Hopfner KP, Karcher A et al (2004) The Rad50 signature motif: essential to ATP binding and biological function. J Mol Biol 335:937–951

    Article  CAS  PubMed  Google Scholar 

  • Nakada D, Matsumoto K, Sugimoto K (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17:1957–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai W, Westmoreland J, Yeh E, Bloom K, Resnick MA (2011) Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair 10:102–110

    Article  CAS  PubMed  Google Scholar 

  • Nicolette ML, Lee K, Guo Z, Rani M, Chow JM et al (2010) Mre11–Rad50–Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat Struct Mol Biol 17:1478–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL et al (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W et al (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YB, Chae J, Kim YC, Cho Y (2011) Crystal structure of human Mre11: understanding tumorigenic mutations. Structure 19:1591–1602

    Article  CAS  PubMed  Google Scholar 

  • Paull TT, Gellert M (1998) The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol Cell 1:969–979

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y, Sun Y, Huang SN, Nitiss JL (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 17:703–721

    Article  CAS  PubMed  Google Scholar 

  • Puddu F, Oelschlaegel T, Guerini I, Geisler NJ, Niu H et al (2015) Synthetic viability genomic screening defines Sae2 function in DNA repair. EMBO J 34:1509–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reginato G, Cannavo E, Cejka P (2017) Physiological protein blocks direct the Mre11–Rad50–Xrs2 and Sae2 nuclease complex to initiate DNA end resection. Genes Dev 31:2325–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runge KW, Li Y (2018) A curious new role for MRN in Schizosaccharomyces pombe non-homologous end-joining. Curr Genet 64:359–364

    Article  CAS  PubMed  Google Scholar 

  • Schiller CB, Lammens K, Guerini I, Coordes B, Feldmann H et al (2012) Structure of Mre11–Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling. Nat Struct Mol Biol 19:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert FU, Lammens K, Stoehr G, Kessler B, Hopfner KP (2016) Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50. EMBO J 35:759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata A, Moiani D, Arvai AS, Perry J, Harding SM et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–18

    Article  CAS  PubMed  Google Scholar 

  • Shim EY, Chung WH, Nicolette ML, Zhang Y, Davis M et al (2010) Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29:3370–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI et al (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99:577–587

    Article  CAS  PubMed  Google Scholar 

  • Trujillo KM, Yuan SS, Lee EY, Sung P (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273:21447–21450

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Ogawa H, Petrini JH (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7:1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Villa M, Cassani C, Gobbini E, Bonetti D, Longhese MP (2016) Coupling end resection with the checkpoint response at DNA double-strand breaks. Cell Mol Life Sci 73:3655–3663

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Daley JM, Kwon Y, Krasner DS, Sung P (2017) Plasticity of the Mre11–Rad50–Xrs2–Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes Dev 31:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O et al (2008) Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135:97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS et al (2009) Nbs1 flexibly tethers Ctp1 and Mre11–Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GJ, Williams RS, Williams JS, Moncalian G, Arvai AS et al (2011) ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat Struct Mol Biol 18:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Longhese lab for helpful discussions. This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) (IG Grant 19783) and Progetti di Ricerca di Interesse Nazionale (PRIN) 2015 to M. P. L. C. C. was supported by a fellowship from Fondazione Italiana Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renata Tisi or Maria Pia Longhese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsella, A., Cassani, C., Casari, E. et al. Structure–function relationships of the Mre11 protein in the control of DNA end bridging and processing. Curr Genet 65, 11–16 (2019). https://doi.org/10.1007/s00294-018-0861-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0861-5

Keywords

Navigation