Skip to main content
Log in

LC–MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The non-appropriate conditions faced by nutritionally stressed bacteria propitiate error-prone repair events underlying stationary-phase- or stress-associated mutagenesis (SPM). The genetic and molecular mechanisms involved in SPM have been deeply studied but the biochemical aspects of this process have so far been less explored. Previous evidence showed that under conditions of nutritional stress, non-dividing cells of strain B. subtilis YB955 overexpressing ribonucleotide reductase (RNR) exhibited a strong propensity to generate true reversions in the hisC952 (amber), metB5 (ochre) and leuC425 (missense) mutant alleles. To further advance our knowledge on the metabolic conditions underlying this hypermutagenic phenotype, a high-throughput LC–MS/MS proteomic analysis was performed in non-dividing cells of an amino acid-starved strain, deficient for NrdR, the RNR repressor. Compared with the parental strain, the level of 57 proteins was found to increase and of 80 decreases in the NrdR-deficient strain. The proteomic analysis revealed an altered content in proteins associated with the stringent response, nucleotide metabolism, DNA repair, and cell signaling in amino acid-starved cells of the ∆nrdR strain. Overall, our results revealed that amino acid-starved cells of strain B. subtilisnrdR that escape from growth-limiting conditions exhibit a complex proteomic pattern reminiscent of a disturbed metabolism. Future experiments aimed to understand the consequences of disrupting the cell signaling pathways unveiled in this study, will advance our knowledge on the genetic adaptations deployed by bacteria to escape from growth-limiting environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ambriz-Aviña V, Yasbin RE, Robleto EA, Pedraza-Reyes M (2016) Role of base excision repair (BER) in transcription-associated-mutagénesis of nutritionally stressed non-growing Bacillus subtilis cell subpopulations. Curr Microbiol 73:721–726. doi:10.1007/s00284-016-1122-9 (PMID 27530626)

    Article  PubMed  PubMed Central  Google Scholar 

  • Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AI, Grossman AD, Lovett CM (2005) Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 187:7655–7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barajas-Ornelas Rdel C, Ramirez-Guadiana FH, Juarez-Godinez R, Ayala-Garcia VM, Robleto EA, Yasbin RE, Pedraza-Reyes M (2014) Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis. J Bacteriol 196:3012–3022

    Article  PubMed  Google Scholar 

  • Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berlatzky I, Rouvinski A, Meyerovich M, Ben-Yehuda S (2006) A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell 125:679–690

    Article  CAS  PubMed  Google Scholar 

  • Bittner AN, Kriel A, Wang JD (2014) Lowering GTP level increases survival of amino acid starvation but slows growth rate for Bacillus subtilis cells lacking (p)ppGpp. J Bacteriol 196:2067–2076

    Article  PubMed  PubMed Central  Google Scholar 

  • Blagova EV, Levdikov VM, Tachikawa K, Sonenshein AL, Wilkinson AJ (2003) Crystallization of the GTP-dependent transcriptional regulator CodY from Bacillus subtilis. Acta Crystallogr D Biol Crystallogr 59:155–157

    Article  PubMed  Google Scholar 

  • Buckstein MH, He J, Rubin H (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190:718–726

    Article  CAS  PubMed  Google Scholar 

  • Buglino J, Shen V, Hakimian P, Lima CD (2002) Structural and biochemical analysis of the Obg GTP binding protein. Structure 10:1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Campos SS, Ibarra-Rodriguez JR, Barajas-Ornelas RC, Ramirez-Guadiana FH, Obregon-Herrera A, Setlow P, Pedraza-Reyes M (2014) Interaction of apurinic/apyrimidinic endonucleases Nfo and ExoA with the DNA integrity scanning protein DisA in the processing of oxidative DNA damage during Bacillus subtilis spore outgrowth. J Bacteriol 196:568–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Case ED, Akers JC, Tan M (2011) CT406 encodes a chlamydial ortholog of NrdR, a repressor of ribonucleotide reductase. J Bacteriol 193:4396–4404

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Cerritos KV, Yasbin RE, Robleto EA, Pedraza-Reyes M (2017) Role of ribonucleotide reductase in Bacillus subtilis stress-associated mutagenesis. J Bacteriol 199(4):e00715–e00716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambert R, Pereira Y, Petit-Glatron M-F (2003) Purification and characterization of YfkN, a trifunctional nucleotide phosphoesterase secreted by Bacillus subtilis. J Biochem 134:655–660

    Article  CAS  PubMed  Google Scholar 

  • Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stulke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97:189–204

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Debora BN, Vidales LE, Ramirez R, Ramirez M, Robleto EA, Yasbin RE, Pedraza-Reyes M (2011) Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis. J Bacteriol 193:236–245

    Article  CAS  PubMed  Google Scholar 

  • Eymann C, Homuth G, Scharf C, Hecker M (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184:2500–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger T, Wolz C (2014) Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria. Int J Med Microbiol 304:150–155

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Marroquín M, Vidales LE, Debora BN, Santos-Escobar F, Obregon-Herrera A, Robleto EA, Pedraza-Reyes M (2015) Role of Bacillus subtilis DNA glycosylase MutM in counteracting oxidatively induced DNA damage and in stationary-phase-associated mutagenesis. J Bacteriol 197:1963–1971

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Marroquín M, Martin HA, Prisbrey A, Pepper A, Girard M, Cortes A, Vallin C, Yasbin RE, Pedraza-Reyes M, Robleto EA (2016) Stationary-phase mutagenesis in stressed Bacillus subtilis cells operates by Mfd-dependent mutagenic pathways. Genes 7(7):33

    Article  PubMed Central  Google Scholar 

  • Grinberg I, Shteinberg T, Gorovitz B, Aharonowitz Y, Cohen G, Borovok I (2006) The Streptomyces NrdR transcriptional regulator is a Zn ribbon/ATP cone protein that binds to the promoter regions of class Ia and class II ribonucleotide reductase operons. J Bacteriol 188:7635–7644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundlach J, Dickmanns A, Schroder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V, Tittmann K, Stulke J, Ficner R (2015) Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem 290:3069–3080

    Article  CAS  PubMed  Google Scholar 

  • Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Karasinski J, Wrobel K, Corrales Escobosa AR, Konopka A, Bulska E, Wrobel K (2017) Allium cepa response to sodium selenite (Se(IV)) studied in plant roots by LC-MS-based proteomic approach. J Agric Food Chem. doi:10.1021/acs.jafc.7b01085

    PubMed  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen K, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci 100:4678–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovác AT (2016) Bacterial differentiation via gradual activation of global regulators. Curr Genet 62:125–128. doi:10.1007/s00294-015-0524-8

    Article  Google Scholar 

  • Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD (2012) Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriel A, Brinsmade SR, Tse JL, Tehranchi AK, Bittner AN, Sonenshein AL, Wang JD (2014) GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes. J Bacteriol 196:189–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Maaβ S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, Becher D, Hecker M (2014) Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis. Mol Cell Proteomics 13:2260–2276

    Article  PubMed  PubMed Central  Google Scholar 

  • Maslowska KH, Makiela-Dzbenska K, Fijalkowska IJ, Schaaper RM (2015) Suppression of the E. coli SOS response by dNTP pool changes. Nucleic Acids Res 43:4109–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehne FM, Gunka K, Eilers H, Herzberg C, Kaever V, Stulke J (2013) Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J Biol Chem 288:2004–2017

    Article  CAS  PubMed  Google Scholar 

  • Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO (2006) The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci USA 103:13962–13967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molle V, Nakaura Y, Shivers RP, Yamaguchi H, Losick R, Fujita Y, Sonenshein AL (2003) Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 185:1911–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveen V, Hsiao CD (2016) NrdR transcription regulation: global proteome analysis and its role in Escherichia coli viability and virulence. PLoS One 11:e0157165

    Article  PubMed  PubMed Central  Google Scholar 

  • Oussenko IA, Sanchez R, Bechhofer DH (2002) Bacillus subtilis YhaM, a member of a new family of 3′-to-5′ exonucleases in gram-positive bacteria. J Bacteriol 184:6250–6259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham TH, Liang ZX, Marcellin E, Turner MS (2016) Replenishing the cyclic di AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr Genet 62:731–738. doi:10.1007/s00294-016-0600-8

    Article  CAS  PubMed  Google Scholar 

  • Pulschen AA, Sastre DE, Machinandiarena F, Crotta Asis A, Albanesi D, de Mendoza D, Gueiros-Filho FJ (2017) The stringent response plays a key role in Bacillus subtilis survival of fatty acid starvation. Mol Microbiol 103:698–712

    Article  CAS  PubMed  Google Scholar 

  • Rodionov DA, Gelfand MS (2005) Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends Genet 21:385–389

    Article  CAS  PubMed  Google Scholar 

  • Rosario-Cruz Z, Boyd JM (2016) Physiological roles of bacillithiol in intracellular metal processing. Curr Genet 62:59–65. doi:10.1007/s00294-015-0511-0

    Article  CAS  PubMed  Google Scholar 

  • Rudner R, Murray A, Huda N (1999) Is there a link between mutation rates and the stringent response in B. subtilis? Ann N Y Acad Sci 870:418–422

    Article  CAS  PubMed  Google Scholar 

  • Salas-Pacheco JM, Urtiz-Estrada N, Martinez-Cadena G, Yasbin RE, Pedraza-Reyes M (2003) YqfS from Bacillus subtilis is a spore protein and a new functional member of the type IV apurinic/apyrimidinic-endonuclease family. J Bacteriol 185:5380–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shazand K, Tucker J, Chiang R, Stansmore K, Sperling-Petersen H, Grunberg-Manago M, Rabinowitz J, Leighton T (1990) Isolation and molecular genetic characterization of the Bacillus subtilis gene (infB) encoding protein synthesis initiation factor 2. J Bacteriol 172:2675–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus Subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung HM, Yasbin RE (2002) Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J Bacteriol 184:5641–5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrents E, Grinberg I, Gorovitz-Harris B, Lundstrom H, Borovok I, Aharonowitz Y, Sjoberg BM, Cohen G (2007) NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J Bacteriol 189:5012–5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat Methods 13:731–740

    Article  CAS  PubMed  Google Scholar 

  • Urtiz-Estrada N, Salas-Pacheco JM, Yasbin RE, Pedraza-Reyes M (2003) Forespore-specific expression of Bacillus subtilis yqfS, which encodes type IV apurinic/apyrimidinic endonuclease, a component of the base excision repair pathway. J Bacteriol 185:340–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidales LE, Cardenas LC, Robleto E, Yasbin RE, Pedraza-Reyes M (2009) Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 191:506–513

    Article  CAS  PubMed  Google Scholar 

  • Wright BE (1996) The effect of the stringent response on mutation rates in Escherichia coli K-12. Mol Microbiol 19:213–219

    Article  CAS  PubMed  Google Scholar 

  • Wright BE (1997) Does selective gene activation direct evolution? FEBS Lett 402:4–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT; Grants 205744 and 221231) of México and by the University of Guanajuato (Grants 936-2016 and 1090-2016) to M.P-R. Work at K. Wrobel and K. Wrobel laboratory was supported by Grant (CONACyT, 123732). KV. Castro-Cerritos was supported by a scholarship from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pedraza-Reyes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Cerritos, K.V., Lopez-Torres, A., Obregón-Herrera, A. et al. LC–MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis. Curr Genet 64, 215–222 (2018). https://doi.org/10.1007/s00294-017-0722-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0722-7

Keywords

Navigation