Skip to main content
Log in

Promoter recruitment of corepressors Sin3 and Cyc8 by activator proteins of the yeast Saccharomyces cerevisiae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

A Correction to this article was published on 21 July 2020

This article has been updated

Abstract

It is generally assumed that pathway-specific transcriptional activators recruit pleiotropic coactivators (such as chromatin-modifying complexes or general transcription factors), while specific repressors contact pleiotropic corepressors creating an inaccessible chromatin by the action of histone deacetylases. We have previously shown that the negative regulator Opi1 of yeast phospholipid biosynthesis inhibits transcription by recruiting corepressors Sin3 and Cyc8 in the presence of precursor molecules inositol and choline. To get access to its target genes, Opi1 physically contacts and counteracts DNA-bound activator Ino2. By using chromatin immunoprecipitation, we show that Sin3 and Cyc8 can be detected at Opi1 target promoters INO1 and CHO2 under repressing and derepressing conditions and that corepressor binding is effective even in the absence of Opi1, while Ino2 is absolutely required. Thus, corepressors may be recruited not only by repressors but also by activators such as Ino2. Indeed, we could demonstrate direct interaction of Ino2 with Sin3 and Cyc8. The Opi1 repressor interaction domain within Ino2 is also able to contact Sin3 and Cyc8. Recruitment of corepressors by an activator is not a regulatory exception as we could show that activators Pho4 and Hac1 also contain domains being able to interact with Sin3 and Cyc8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 21 July 2020

    The original version of this article unfortunately contained a mistake.

References

  • Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349

    CAS  PubMed  Google Scholar 

  • Byrne M, Miller N, Springer M, O’Shea EK (2004) A distal, high-affinity binding site on the cyclin-CDK substrate Pho4 is important for its phosphorylation and regulation. J Mol Biol 335:57–70

    Article  CAS  PubMed  Google Scholar 

  • Conlan RS, Gounalaki N, Hatzis P, Tzamarias D (1999) The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274:205–210

    Article  CAS  PubMed  Google Scholar 

  • Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278:50158–50162

    Article  CAS  PubMed  Google Scholar 

  • De Antoni A, Gallwitz D (2000) A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae. Gene 246:179–185

    Article  PubMed  Google Scholar 

  • Dietz M, Heyken WT, Hoppen J, Geburtig S, Schüller HJ (2003) TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae. Mol Microbiol 48:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Graumann J, Dunipace LA, Seol JH, McDonald WH, Yates JR 3rd, Wold BJ, Deshaies RJ (2004) Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol Cell Proteomics 3:226–237

    Article  CAS  PubMed  Google Scholar 

  • Grigat M, Jäschke Y, Kliewe F, Pfeifer M, Walz S, Schüller HJ (2012) Multiple histone deacetylases are recruited by corepressor Sin3 and contribute to gene repression mediated by Opi1 regulator of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 287:461–472

    Article  CAS  PubMed  Google Scholar 

  • Grzenda A, Lomberk G, Zhang JS, Urrutia R (2009) Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyken WT, Repenning A, Kumme J, Schüller HJ (2005) Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56:696–707

    Article  CAS  PubMed  Google Scholar 

  • Jäschke Y, Schwarz J, Clausnitzer D, Müller C, Schüller HJ (2011) Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 285:91–100

    Article  PubMed  Google Scholar 

  • Kadamb R, Mittal S, Bansal N, Batra H, Saluja D (2013) Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 92:237–246

    Article  CAS  PubMed  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371

    Article  CAS  PubMed  Google Scholar 

  • Kumme J, Dietz M, Wagner C, Schüller HJ (2008) Dimerization of yeast transcription factors Ino2 and Ino4 is regulated by precursors of phospholipid biosynthesis mediated by Opi1 repressor. Curr Genet 54:35–45

    Article  CAS  PubMed  Google Scholar 

  • Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647

    Article  CAS  PubMed  Google Scholar 

  • Loewith R, Smith JS, Meijer M, Williams TJ, Bachman N, Boeke JD, Young D (2001) Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J Biol Chem 276:24068–24074

    Article  CAS  PubMed  Google Scholar 

  • Lopes JM, Hirsch JP, Chorgo PA, Schulze KL, Henry SA (1991) Analysis of sequences in the INO1 promoter that are involved in its regulation by phospholipid precursors. Nucleic Acids Res 19:1687–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malavé TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84:437–443

    Article  PubMed  Google Scholar 

  • Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc Natl Acad Sci USA 97:4660–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz Z, Baniahmad C, Burris TP, Stillman DJ, O’Malley BW, Tsai MJ (1994) The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor and positively regulates the activities of GAL4 and the HAP1 activator. Mol Gen Genet 245:724–733

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, Oshima Y (1990) Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol Cell Biol 10:2224–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297–1305

    Article  CAS  PubMed  Google Scholar 

  • Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835

    Article  CAS  PubMed  Google Scholar 

  • Schröder M, Clark R, Liu CY, Kaufman RJ (2004) The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO J 23:2281–2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Schüller HJ, Hahn A, Tröster F, Schütz A, Schweizer E (1992) Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J 11:107–114

    PubMed  PubMed Central  Google Scholar 

  • Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schüller HJ (1995) Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res 23:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Silverstein RA, Ekwall K (2005) Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 47:1–17

    Article  CAS  PubMed  Google Scholar 

  • Sternberg PW, Stern MJ, Clark I, Herskowitz I (1987) Activation of the yeast HO gene by release from multiple negative controls. Cell 48:567–577

    Article  CAS  PubMed  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821–831

    Article  CAS  PubMed  Google Scholar 

  • Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11:6306–6316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner C, Dietz M, Wittmann J, Albrecht A, Schüller HJ (2001) The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol Microbiol 41:155–166

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13:1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Clark I, Nicholson PR, Herskowitz I, Stillman DJ (1990) The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol Cell Biol 10:5927–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Reynolds-Hager L, Stillman DJ (1994) Genetic interactions between SIN3 mutations and the Saccharomyces cerevisiae transcriptional activators encoded by MCM1, STE12, and SWI1. Mol Gen Genet 245:675–685

    Article  CAS  PubMed  Google Scholar 

  • Washburn BK, Esposito RE (2001) Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 21:2057–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson AD, Edmondson DG, Bone JR, Mukai Y, Yu Y, Du W, Stillman DJ, Roth SY (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14:2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MJ, Hirsch JP, Henry SA (1991) The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem 266:863–872

    CAS  PubMed  Google Scholar 

  • Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Suka N, Carlson M, Grunstein M (2001) TUP1 utilizes histone H3/H2B specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7:117–126

    Article  CAS  PubMed  Google Scholar 

  • Xin X, Lan C, Lee HC, Zhang L (2007) Regulation of the HAP1 gene involves positive actions of histone deacetylases. Biochem Biophys Res Commun 362:120–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto H, Ohmae M, Yamashita I (1992) The Saccharomyces cerevisiae GAM2/SIN3 protein plays a role in both activation and repression of transcription. Mol Gen Genet 233:327–330

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136:813–817

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Schüller.

Additional information

Communicated by M. Kupiec.

F. Kliewe and M. Engelhardt contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kliewe, F., Engelhardt, M., Aref, R. et al. Promoter recruitment of corepressors Sin3 and Cyc8 by activator proteins of the yeast Saccharomyces cerevisiae . Curr Genet 63, 739–750 (2017). https://doi.org/10.1007/s00294-017-0677-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0677-8

Keywords

Navigation