Skip to main content
Log in

Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae)

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Ziziphus jujuba is an important woody plant with high economic and medicinal value. Here, we analyzed and characterized the complete chloroplast (cp) genome of Z. jujuba, the first member of the Rhamnaceae family for which the chloroplast genome sequence has been reported. We also built a web browser for navigating the cp genome of Z. jujuba (http://bio.njfu.edu.cn/gb2/gbrowse/Ziziphus_jujuba_cp/). Sequence analysis showed that this cp genome is 161,466 bp long and has a typical quadripartite structure of large (LSC, 89,120 bp) and small (SSC, 19,348 bp) single-copy regions separated by a pair of inverted repeats (IRs, 26,499 bp). The sequence contained 112 unique genes, including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The genome structure, gene order, GC content, and codon usage are similar to other typical angiosperm cp genomes. A total of 38 tandem repeats, two forward repeats, and three palindromic repeats were detected in the Z. jujuba cp genome. Simple sequence repeat (SSR) analysis revealed that most SSRs were AT-rich. The homopolymer regions in the cp genome of Z. jujuba were verified and manually corrected by Sanger sequencing. One-third of mononucleotide repeats were found to be erroneously sequenced by the 454 pyrosequencing, which resulted in sequences of 1–4 bases shorter than that by the Sanger sequencing. Analyzing the cp genome of Z. jujuba revealed that the IR contraction and expansion events resulted in ycf1 and rps19 pseudogenes. A phylogenetic analysis based on 64 protein-coding genes showed that Z. jujuba was closely related to members of the Elaeagnaceae family, which will be helpful for phylogenetic studies of other Rosales species. The complete cp genome sequence of Z. jujuba will facilitate population, phylogenetic, and cp genetic engineering studies of this economic plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asif MH, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P, Mohanty CS, Sawant SV, Tuli R (2010) Complete sequence and organisation of the jatropha curcas (euphorbiaceae) chloroplast genome. Tree Genet Genomes 6(6):941–952. doi:10.1007/s11295-010-0303-0

    Article  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazier JC, Guisinger MM, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272

    Article  CAS  Google Scholar 

  • Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang JQY, Zmarzty S (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12:R62–R64. doi:10.1016/S0960-9822(01)00675-3

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Hao Z, Xu H, Yang L, Liu G, Sheng Y, Zheng C, Zheng W, Cheng T, Shi J (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci 6:447. doi:10.3389/fpls.2015.00447

    PubMed  PubMed Central  Google Scholar 

  • Choi KS, Son O, Park S (2015) The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae. PLoS One 10(9):e0138727

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronn R, Liston A, Parks M, Gernandt DS, Shen RK, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122. doi:10.1093/nar/gkn502

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586. doi:10.1038/nbt0602-581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Carmona-Sanchez O, Burns BB (2004a) Chloroplastderived vaccine antibodies, biopharmaceuticals, and edible vaccines in transgenic plants engineered via the chloroplast genome. In: Schillberg S (ed) Molecular farming. Wiley, Germany, Chapter 8 pp 113–133

  • DeCosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 9:71–74. doi:10.1038/83559

    Google Scholar 

  • do Nascimento Vieira L, dos Anjos KG, Faoro H, de Freitas Fraga HP, Greco TM, de Oliveira Pedrosa F, de Souza EM, Rogalski M, de Souza RF, Guerra MP (2015) Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Curr Genet. doi:10.1007/s00294-015-0549-z

    Google Scholar 

  • Ewing B, Hillier LD, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A, Sargent DJ (2013) An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genom 14(1):670. doi:10.1186/1471-2164-14-670

    Article  CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–W279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao QH, Wu CS, Wang M (2013) The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem 61:3351–3363

    Article  CAS  PubMed  Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61(4):665–677. doi:10.1007/s00294-015-0495-9

    Article  CAS  PubMed  Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299. doi:10.1016/0168-9525(89)90111-X

    Article  CAS  PubMed  Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer-Verlag, Dordrecht, pp 93–114

    Chapter  Google Scholar 

  • Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe CJ, Barbrook AC, Koumandou VL, Nisbet RE, Symington HA, Wightman TF (2003) Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358:99–106. doi:10.1098/rstb.2002.1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huotari T, Korpelainen H (2012) Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene 508:96–105

    Article  CAS  PubMed  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian MG, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, Mcneal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Khan IA, Heinze B, Azim MK (2012) The chloroplast genome sequence of date palm (Phoenix dactylifera L. cv. ‘Aseel’). Plant Molecular Biology Reporter 30(3):666–678. doi:10.1007/s11105-011-0373-7

    Article  CAS  Google Scholar 

  • Kong WQ (2016) Yang J H (2016) The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet 62:165–172. doi:10.1007/s00294-015-0507-9

    Article  CAS  PubMed  Google Scholar 

  • Kuang D, Wu H, Wang Y, Gao L, Zhang S, Lu L (2011) Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 54:663–673. doi:10.1139/G11-026

    Article  PubMed  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642. doi:10.1093/nar/29.22.4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DJ (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations withinchloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180. doi:10.1093/molbev/msm036

    Article  CAS  PubMed  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274. doi:10.1007/s00294-007-0161-y

    Article  CAS  PubMed  Google Scholar 

  • Ma XY, Xie CX, Liu C, Song JY, Yao H, Luo K, Zhu Y, Gao T, Pang X, Qian J, Chen S (2010) Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biol Pharm Bull 33:1919–1924. doi:10.1248/bpb.33.1919

    Article  CAS  PubMed  Google Scholar 

  • Ma QY, Feng K, Yang WX, Chen YN, Yu FX, Yin TM (2014) Identification and characterization of nucleotide variations in the genome of Ziziphus jujuba (Rhamnaceae) by next generation sequencing. Mol Biol Rep 41(5):3219–3223. doi:10.1007/s11033-014-3184-8

    Article  CAS  PubMed  Google Scholar 

  • Minoche AE, Dohm JC, Himmelbauer H (2011) Evaluation of genomic highthroughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol 12:R112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuhaus HE, Emes MJ (2000) Nonphotosynthetic Metabolism in Plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140. doi:10.1146/annurev.arplant.51.1.111

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS, Tan X, Wan F, Weining S (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One 7:e36869. doi:10.1371/journal.pone.0036869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aoto S-I, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574. doi:10.1038/322572a0

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2015) The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet. doi:10.1007/s00294-015-0548-0

    PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK, Bogorad L (eds) Cell Culture and Somatic Cell Genetics in Plants, Vol 7A, The Molecular Biology of Plastids. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Palmer J, Jansen R, Michaels H, Chase M, Manhart J (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75:1180–1206. doi:10.2307/2399279

    Article  Google Scholar 

  • Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S (2013) The Complete Chloroplast Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. PLoS One 8(2):e57607. doi:10.1371/journal.pone.0057607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Stewart DA, Stromberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Meth 5:179–181. doi:10.1038/nmeth.1172

    Article  CAS  Google Scholar 

  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin C-S, Lliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Møller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK (2011) Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med 365(8):709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) Diversity and evolution of plants-genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, pp 45–68

    Chapter  Google Scholar 

  • Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genom 8:174

    Article  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering. Cytoplasmic male sterility via the chloroplast genome. Plant Phys 138:1232–1246

    Article  CAS  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. doi:10.1093/nar/gki366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears BB (1980) Elimination of plastids during spermatogenesis and fertilization in the plant kingdom. Plasmid 4:233–255

    Article  CAS  PubMed  Google Scholar 

  • Shanker A (2013) Identification of microsatellites in chloroplast genome of Anthoceros formosae. Arch Bryol 191:1–6

    Google Scholar 

  • Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between non coding plastome and nuclear ADH sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Sommer DD, Delcher AL, Salzberg SL, Pop M (2007) Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6(6):e21298. doi:10.1371/journal.pone.0021298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res 12(3):215–220

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol. Biol. pp 149–168

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M (2011) Next generation sequence assembly with AMOS. Curr. Protoc. Bioinformatics 33: 11.8.1–11.8.18

  • Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297. doi:10.1007/s11103-011-9762-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wuckett NJ, Zhang Y, Schneeweiss Renner SSGM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetuc parasitic plants of the broomrape family. Plant Cell 25:3711–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe KH, Gouy ML, Yang YW, Sharp PM, Li WH (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC, Palmer JD (1992) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    Article  CAS  PubMed  Google Scholar 

  • Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H, Lin Duvall MRCS (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68. doi:10.1186/1471-2229-10-68

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. doi:10.1093/bioinformatics/bth352

    Article  CAS  PubMed  Google Scholar 

  • Yan YH, Gao ZP (2002) Industrialization of Chinese jujube. J Northwest Sci Technol Univ Agric For 30:95–98 (in Chinese)

    Google Scholar 

  • Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssallem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5:e12762. doi:10.1371/journal.pone.0012762

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao H, Song JY, Ma XY, Liu C, Li Y, Xu HX, Han JP, Duan LS, Chen SL (2009) Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med 75:667–669. doi:10.1055/s-0029-1185385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Natural Science Foundation of China (31561123001, 31570662). The work was supported by the Program for Innovative Research Team of the Educational Department of China and in Universities of Jiangsu Province, the Priority Academic Program Development (PAPD) program, and the Doctorate Fellowship Foundation at Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ye.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

294_2016_612_MOESM1_ESM.tif

Neighbor-joining phylogenetic tree based on 64 protein-coding genes from 24 plant taxa. The tree was obtained using the Poisson model. Numbers at the nodes are bootstrap support values. (TIFF 1943 kb)

Primers used for PCR amplification to fill gaps in the assembled Z. jujuba chloroplast sequence. (DOC 16 kb)

Seventeen genes in the Ziziphus jujuba chloroplast genome that contained introns. (DOC 35 kb)

Repeat sequences in the Ziziphus jujuba chloroplast genome. (DOC 77 kb)

Distribution of SSRs in the Ziziphus jujuba chloroplast genome. (DOC 191 kb)

Details of the chloroplast genome sequences used for the phylogenetic analysis. (DOC 48 kb)

Primers used for PCR amplification to test the accuracy of mononucleotide repeats. (XLS 41 kb)

Verification of the homopolymers in the Ziziphus jujuba cp genome. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Li, S., Bi, C. et al. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae). Curr Genet 63, 117–129 (2017). https://doi.org/10.1007/s00294-016-0612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0612-4

Keywords

Navigation