Skip to main content
Log in

Negative epistasis: a route to intraspecific reproductive isolation in yeast?

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Exploring the molecular bases of intraspecific reproductive isolation captures the ongoing phenotypic consequences of genetic divergence and provides insights into the early onset of speciation. Recent species-wide surveys using natural populations of yeasts demonstrated that intrinsic post-zygotic reproductive isolation segregates readily within the same species, and revealed the multiplicity of the genetic mechanisms underlying such processes. These advances deepened our current understandings and opened further perspectives regarding the complete picture of molecular and evolutionary origins driving the onset of intraspecific reproductive isolation in yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarède I, Albertin W, Durrens P, Sherman DJ, Marullo P, Hittinger CT, Gonçalves P, Sampaio JP (2014) A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat Commun. 2(5):4044. doi:10.1038/ncomms5044

    Google Scholar 

  • Bikard D, Patel D, Le Mette C, Giorgi V, Camilleri C, Bennett MJ, Loudet O (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323:623–626. doi:10.1126/science.1165917

    Article  CAS  PubMed  Google Scholar 

  • Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L (2013) Finding the sources of missing heritability in a yeast cross. Nature 494:234–237. doi:10.1038/nature11867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloom JS, Kotenko I, Sadhu M, Treusch S, Albert FW, Kruglyak L (2015) The role of genetic interactions in yeast quantitative traits. Biorxiv. doi:10.1101/019513

  • Bomblies K, Weigel D (2010) Arabidopsis and relatives as models for the study of genetic and genomic incompatibilities. Philos Trans R Soc Lond B 365:1815–1823. doi:10.1098/rstb.2009.0304

    Article  Google Scholar 

  • Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martin-Pizarro C, Laitinen RA, Rowan BA, Tenenboim H, Lechner S, Demar M, Habring-Muller A, Lanz C, Ratsch G, Weigel D (2014) Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159:1341–1351. doi:10.1016/j.cell.2014.10.049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Charron G, Leducq JB, Landry CR (2014) Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Mol Ecol 23:4362–4372. doi:10.1111/mec.12864

    Article  PubMed  Google Scholar 

  • Chou JY, Hung YS, Lin KH, Lee HY, Leu JY (2010) Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol 8:e1000432. doi:10.1371/journal.pbio.1000432

    Article  PubMed Central  PubMed  Google Scholar 

  • Clowers KJ, Heilberger J, Piotrowski JS, Will JL, Gasch AP (2015) Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae. Mol Biol Evol. doi:10.1093/molbev/msv112

    PubMed Central  PubMed  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431. doi:10.1126/science.1180823

    Article  CAS  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation Sinauer Associates, Sunderland

  • Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG (2003) Engineering evolution to study speciation in yeasts. Nature 422:68–72. doi:10.1038/nature01418

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JA, Iida T, Takuno S, Sugino RP, Kado T, Kugou K, Mura S, Kobayashi T, Ohta K, Nakayama J, Innan H (2014) Population genomics of the fission yeast Schizosaccharomyces pombe. PLoS ONE 9:e104241. doi:10.1371/journal.pone.0104241

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405:451–454. doi:10.1038/35013058

    Article  CAS  PubMed  Google Scholar 

  • Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A (2015) The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4:e00662. doi:10.7554/eLife.00662

    Article  PubMed  Google Scholar 

  • Friedrich A, Jung P, Reisser C, Fischer G, Schacherer J (2015) Population genomics reveals chromosome-scale heterogeneous evolution in a protoploid yeast. Mol Biol Evol 32:184–192. doi:10.1093/molbev/msu295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heck JA, Argueso JL, Gemici Z, Reeves RG, Bernard A, Aquadro CF, Alani E (2006) Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair. Proc Natl Acad Sci USA 103:3256–3261. doi:10.1073/Pnas.0510998103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo CA (2014) Genetic and phenotypic intra-species variation in Candida albicans. Genome Res 225:413–425. doi:10.1101/gr.174623.114

    Google Scholar 

  • Ho Y, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet. doi:10.1007/s00294-015-0491-0

    PubMed  Google Scholar 

  • Hou J, Friedrich A, de Montigny J, Schacherer J (2014) Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Curr Biol 24:1153–1159. doi:10.1016/j.cub.2014.03.063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou J, Friedrich A, Gounot JS, Schacherer J (2015) Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast. Nat Commun 6:7214. doi:10.1038/ncomms8214

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeffares DC, Rallis C, Rieux A, Speed D, Převorovský M, Mourier T, Marsellach FX, Iqbal Z, Lau W, Cheng TM, Pracana R, Mülleder M, Lawson JL, Chessel A, Bala S, Hellenthal G, O’Fallon B, Keane T, Simpson JT, Bischof L, Tomiczek B, Bitton DA, Sideri T, Codlin S, Hellberg JE, van Trigt L, Jeffery L, Li JJ, Atkinson S, Thodberg M, Febrer M, McLay K, Drou N, Brown W, Hayles J, Carazo Salas RE, Ralser M, Maniatis N, Balding DJ, Balloux F, Durbin R, Bähler J (2015) The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nat Genet 47:235–241. doi:10.1038/ng.3215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liti G, Schacherer J (2011) The rise of yeast population genomics. C R Biol 334:612–619. doi:10.1016/j.crvi.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. doi:10.1038/nature07743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paliwal S, Fiumera AC, Fiumera HL (2014) Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Genetics 198:1251–1265. doi:10.1534/genetics.114.168575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539. doi:10.1101/gr.436602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sampathkumar G, Drouin G (2015) Purifying selection against gene conversions between the polyamine transport (TPO) genes of Saccharomyces species. Curr Genet 2015(61):67–72. doi:10.1007/s00294-014-0445-y

    Article  Google Scholar 

  • Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458:342–345. doi:10.1038/nature07670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seidel HS, Rockman MV, Kruglyak L (2008) Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319:589–594. doi:10.1126/science.1151107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skelly DA, Merrihew GE, Riffle M, Connelly CF, Kerr EO, Johansson M, Jaschob D, Graczyk B, Shulman NJ, Wakefield J, Cooper SJ, Fields S, Noble WS, Muller EG, Davis TN, Dunham MJ, Maccoss MJ, Akey JM (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23:1496–1504. doi:10.1101/gr.155762.113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH (2015) The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 25:762–774. doi:10.1101/gr.185538.114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Agence Nationale de la Recherche (ANR Grant 2011-JSV6-004-01) and the National Institutes of Health (NIH Grant R01 GM101091-01) for financial support. J.H. is supported in part by a grant from the Ministère de l’Enseignement Supérieur et de la Recherche and in part by a fellowship from the La Ligue contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Schacherer.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Schacherer, J. Negative epistasis: a route to intraspecific reproductive isolation in yeast?. Curr Genet 62, 25–29 (2016). https://doi.org/10.1007/s00294-015-0505-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0505-y

Keywords

Navigation