Skip to main content
Log in

Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

To gain further insights into the mechanisms of redox homeostasis in arbuscular mycorrhizal fungi, we characterized a Glomus intraradices gene (GintSOD1) showing high similarity to previously described genes encoding CuZn superoxide dismutases (SODs). The GintSOD1 gene consists of an open reading frame of 471 bp, predicted to encode a protein of 157 amino acids with an estimated molecular mass of 16.3 kDa. Functional complementation assays in a CuZnSOD-defective yeast mutant showed that GintSOD1 protects the yeast cells from oxygen toxicity and that it, therefore, encodes a protein that scavenges reactive oxygen species (ROS). GintSOD1 transcripts differentially accumulate during the fungal life cycle, reaching the highest expression levels in the intraradical mycelium. GintSOD1 expression is induced by the well known ROS-inducing agents paraquat and copper, and also by fenpropimorph, a sterol biosynthesis inhibitor (SBI) fungicide. These results suggest that GintSOD1 is involved in the detoxification of ROS generated from metabolic processes and by external agents. In particular, our data indicate that the antifungal effects of fenpropimorph might not be only due to the interference with sterol metabolism but also to the perturbation of other biological processes and that ROS production and scavenging systems are involved in the response to SBI fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbà S, Khouja HR, Martino E, Archer DB, Perotto S (2009) SOD1-targeted gene disruption in the ericoid mycorrhizal fungus Oidiodendron maius reduces conidiation and the capacity for mycorrhization. Mol Plant Microbe Interact 22:1412–1421

    Article  PubMed  CAS  Google Scholar 

  • Adamis PDB, Gomes DS, Pereira MD, Mesquita JFd, Pinto MLCC et al (2004) The effect of superoxide dismutase deficiency on cadmium stress. J Biochem Mol Toxicol 18:12–17

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol 90:109–116

    Article  PubMed  CAS  Google Scholar 

  • Arines J, Quintela M, Vilariño A, Palma JM (1994) Protein patterns and superoxide dismutase activity in non-mycorrhizal and arbuscular mycorrhizal Pisum sativum L. plants. Plant Soil 166:37–45

    Article  CAS  Google Scholar 

  • Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Belozerskaya T, Gessler N (2006) Oxidative stress and differentiation in Neurospora crassa. Microbiology 75:427–431

    Article  CAS  Google Scholar 

  • Benabdellah K, Merlos MA, Azcón-Aguilar C, Ferrol N (2009) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103

    Article  PubMed  CAS  Google Scholar 

  • Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  PubMed  Google Scholar 

  • Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  Google Scholar 

  • Blee KA, Anderson AJ (2000) Defence responses in plants to arbuscular mycorrhizal fungi. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. The American Phytopathological Society, St Paul, pp 27–44

    Google Scholar 

  • Bordo D, Djinovic K, Bolognesi M (1994) Conserved patterns in the Cu,Zn superoxide dismutase family. J Mol Biol 238:366–386

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Marinho HS, Cyrne L, Antunes F (2004) Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J Biol Chem 279:6501–6506

    Article  PubMed  CAS  Google Scholar 

  • Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A, Laruelle F, Durand R, Grandmougin-Ferjani A (2009) Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 19:365–374

    Article  PubMed  CAS  Google Scholar 

  • Campagnac E, Lounès-Hadj Sahraoui A, Debiane D, Fontaine J, Laruelle F, Garçon G, Verdin A, Durand R, Shirali P, Grandmougin-Ferjani A (2010) Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza 20:167–178

    Article  PubMed  CAS  Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Article  Google Scholar 

  • Corradi N, Ruffner B, Croll D, Colard A, Horák A, Sanders IR (2009) High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. Appl Environ Microbiol 75:1970–1978

    Article  PubMed  CAS  Google Scholar 

  • Culotta VC, Joh HD, Lin SJ, Slekar KH, Strain J (1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270:29991–29997

    Article  PubMed  CAS  Google Scholar 

  • Fang GC, Hanau R, Vaillancourt L (2002) The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant–pathogenic fungus Colletotrichum graminicola. Fungal Genet Biol 36:155–165

    Article  PubMed  CAS  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  PubMed  CAS  Google Scholar 

  • Fortin J, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan A, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Pinkham J (2000) Tightly regulated β-estradiol dose-dependent expression system for yeast. Biotechniques 29:2–6

    Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Gen Biol 42:130–140

    Article  CAS  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  CAS  Google Scholar 

  • Gralla EB, Valentine JS (1991) Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol 173:5918–5920

    PubMed  CAS  Google Scholar 

  • Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235

    PubMed  CAS  Google Scholar 

  • Lambais MR, Rios-Ruiz WF, Andrade RM (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol 160:421–428

    Article  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC (1992) Yeast lacking superoxide dismutase. Isolation of genetic suppressors. J Biol Chem 267:18298–18302

    PubMed  CAS  Google Scholar 

  • Mandal S, Mitra A, Mallick N (2008) Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 72:56–61

    Article  CAS  Google Scholar 

  • Meyer V, Damveld RA, Arentshorst M, Stahl U, van den Hondel CA, Ram AF (2007) Survival in the presence of antifungals: genome-wide expression profiling of Aspergillus niger in response to sublethal concentrations of carpofungin and fenpropimorph. J Biol Chem 282:32935–32948

    Article  PubMed  CAS  Google Scholar 

  • Moore S, De Vries O, Tudzynski P (2002) The major Cu, Zn SOD of the phytopathogen Claviceps purpurea is not essential for pathogenicity. Mol Plant Pathol 3:9–22

    Article  CAS  Google Scholar 

  • Moradas-Ferreira P, Costa V (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep 5:277–285

    Article  PubMed  CAS  Google Scholar 

  • Munkres KD (1992) Selection and analysis of superoxide dismutase mutants of Neurospora. Free Radic Biol Med 13:305–318

    Article  PubMed  CAS  Google Scholar 

  • Natvig DO, Sylvester K, Dvorachek WH Jr, Baldwin JL (1996) Superoxide dismutases and catalases. In: Brambl R, Marzluf GA (eds) The Mycota III. Springer, Berlin, pp 191–209

    Google Scholar 

  • Oger E, Ghignone S, Campagnac E, Fontaine J, Grandmougin-Ferjani A, Lanfranco L (2009) Functional characterization of a C-4 sterol methyl oxidase from the endomycorrhizal fungus Glomus intraradices. Fungal Genet Biol 46:486–495

    Article  PubMed  CAS  Google Scholar 

  • Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterization of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Longa MA, del Rio LA, Arines J (1993) Superoxide dismutase in vesicular arbuscular mycorrhizal red clover plants. Physiol Plant 87:77–83

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Baudouin E, Hérouart D, Frendo P, Puppo A (2006) Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. J Exp Bot 57:1769–1776

    Article  PubMed  CAS  Google Scholar 

  • Perrone GG, Tan S-X, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368

    Article  PubMed  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–162

    Article  Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler. In: Meuer S, Wittner C, Nakagawara K (eds) Rapid cycle real-time PCR, methods and applications. Springer, Heidelberg, pp 21–34

    Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  PubMed  CAS  Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu–Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27

    Article  CAS  Google Scholar 

  • Ruis H, Koller F (1997) Biochemistry, molecular biology, and cell biology of yeast and fungal catalases. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 309–342

    Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Palma JM (1996) Superoxide dismutase activity in non-mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327–333

    Article  CAS  Google Scholar 

  • Scott B, Eaton CJ (2008) Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11:488–493

    Article  PubMed  CAS  Google Scholar 

  • Seddas PM, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V (2008) Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fungal Genet Biol 45:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Seddas PMA, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V (2009) Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Mol Plant Microbe Interact 22:341–351

    Article  PubMed  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit Nr. 224 Hartmut Bremer Verlag, Friedland

  • Slekar KH, Kosman DJ, Culotta VC (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 271:28831–28836

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Amsterdam

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Tafforeau L, Le Blastier S, Bamps S, Dewez M, Vandenhaute J, Hermand D (2006) Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. EMBO J 25:4547–4556

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci USA 101:6564–6569

    Article  PubMed  CAS  Google Scholar 

  • Tuller G, Daum G (1995) Import of sterols into mitochondria of the yeast Saccharomyces cerevisiae. FEBS Lett 372:29–32

    Article  PubMed  CAS  Google Scholar 

  • Vallino M, Martino E, Boella F, Murat C, Chiapello M, Perotto S (2009) Cu,Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. FEMS Microbiol Lett 293:48–57

    Article  PubMed  CAS  Google Scholar 

  • Zocco D, Fontaine J, Lozanova E, Renard L, Bivort C, Durand R, Gransmougin-Ferjani A, Declerck S (2008) Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res 112:592–601

    Article  PubMed  CAS  Google Scholar 

  • Zyracka E, Zadrag R, Koziol S, Krzeplko A, Bartosz G, Bilinski T (2005) Yeast as a biosensor for antioxidants: simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase. Acta Biochim Pol 52:679–684

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was founded by the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía, Spain (P06-CVI-02263), a Marie Curie Early stage Research Training Fellowship of the European Community’s Sixth Framework Programme under contract number MEST-CT-2004-514213 and the bilateral project Italy–Spain HI2007-0229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Ferrol.

Additional information

Communicated by U. Kues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Guerrero, M., Oger, E., Benabdellah, K. et al. Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices . Curr Genet 56, 265–274 (2010). https://doi.org/10.1007/s00294-010-0298-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0298-y

Keywords

Navigation