Skip to main content
Log in

Ccm1p/Ygr150cp, a pentatricopeptide repeat protein, is essential to remove the fourth intron of both COB and COX1 pre-mRNAs in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

YGR150C gene product (Ygr150cp) is one of the three mitochondrially located Saccharomyces cerevisiae proteins with pentatricopeptide repeat (PPR) motifs. Ygr150cp is essential for mitochondrial functionality but its molecular targets are still unknown. This study was undertaken to define the role of Ygr150cp in mitochondria biogenesis. Repression of Ygr150cp expression in complemented mutants prevented their use of glycerol or lactate, but allowed limited growth on ethanol-containing medium. RNA hybridization studies showed that Δygr150c meiotic segregants produced COB and COX1 transcripts but failed to process them into the mature forms. Detailed RT-PCR assays revealed that Δygr150c specifically failed to remove the fourth intron of both COB and COX1 pre-mRNAs while all other group I introns were excised. Expression of Ygr150cp mutants without any of the PPR motifs did not complement the growth phenotype. Accordingly, we designate YGR150C as CCM1 (COB and COX1 mRNA maturation). This report provides the first evidence of PPR protein involvement in the specific removal of group I introns in mitochondria of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Askarian-Amiri ME, Pel HJ, Guévremont D, McCaughan KK, Poole ES, Sumpter VG, Tate WP (2000) Functional characterization of yeast mitochondrial release factor 1. J Biol Chem 275:17241–17248

    Article  PubMed  CAS  Google Scholar 

  • Banroques J, Perea J, Jacq C (1987) Efficient splicing of two yeast mitochondrial introns controlled by a nuclear-encoded maturase. EMBO J 6:1085–1091

    PubMed  CAS  Google Scholar 

  • Clark TA, Sugnet CW, Ares M Jr (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 296:907–910

    Article  PubMed  CAS  Google Scholar 

  • Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64:281–315

    Article  PubMed  CAS  Google Scholar 

  • de Longevialle AF, Meyer EH, Andrés C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265

    Article  PubMed  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in post-transcriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, Westermann B (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13:847–853

    Article  PubMed  CAS  Google Scholar 

  • Easlon E, Tsang F, Skinner C, Wang C, Lin SJ (2008) The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast Genes Dev 22:931–944

    Article  PubMed  CAS  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Séraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Ann Rev Cell Dev Biol 14:265–303

    Article  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Labouesse M, Netter P, Schroeder R (1984) Molecular basis of the ‘box effect’. A maturase deficiency leading to the absence of splicing of two introns located in two split genes of yeast mitochondrial DNA. Eur J Biochem 144:85–93

    Article  PubMed  CAS  Google Scholar 

  • Luban C, Beutel M, Stahl U, Schmidt U (2005) Systematic screening of nuclear encoded proteins involved in the splicing metabolism of group II introns in yeast mitochondria. Gene 354:72–79

    Article  PubMed  CAS  Google Scholar 

  • Manthey GM, McEwen JE (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J 14:4031–4043

    PubMed  CAS  Google Scholar 

  • Marres CA, de Vries S, Grivell LA (1991) Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem 195:857–862

    Article  PubMed  CAS  Google Scholar 

  • Mili S, Piñol-Roma S (2003) LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol Cell Biol 23:4972–4982

    Article  PubMed  CAS  Google Scholar 

  • Moreno JI (1996) A Trypanosoma cruzi polyantigen obtained by gene fusion: its expression in Staphylococcus aureus and rapid purification. Protein Expr Purif 8:332–340

    Article  PubMed  CAS  Google Scholar 

  • Moreno JI, Piva MA, Miralles CP, De Blas AL (1994) Immunocytochemical localization of the beta 2 subunit of the gamma-aminobutyric acidA receptor in the rat brain. J Comp Neurol 350:260–271

    Article  PubMed  CAS  Google Scholar 

  • Mowat CG, Chapman SK (2000) Flavocytochrome b2. In: Holzenburg A, Scrutton NS (eds) Enzyme-catalyzed electron and radical transfer. Kluwer/Plenum Publishers, New York, pp 279–295

    Google Scholar 

  • Myers AM, Pape LK, Tzagoloff A (1985) Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J 4:2087–2092

    PubMed  CAS  Google Scholar 

  • Pel HJ, Maat C, Rep M, Grivell LA (1992) The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Res 20:6339–6346

    Article  PubMed  CAS  Google Scholar 

  • Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry 61:162–169

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5:1543–1554

    Article  PubMed  CAS  Google Scholar 

  • Rho SB, Martinis SA (2000) The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity. RNA 6:1882–1894

    Article  PubMed  CAS  Google Scholar 

  • Rödel G (1986) Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5′-untranslated COB leader. Curr Genet 11:41–45

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663

    Article  PubMed  CAS  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW (2002) Systematic screen for human disease genes in yeast. Nat Genet 31:400–404

    PubMed  CAS  Google Scholar 

  • Tavares-Carreón F, Camacho-Villasana Y, Zamudio-Ochoa A, Shingú-Vázquez M, Torres-Larios A, Pérez-Martínez X (2008) The pentatricopeptide repeats present in Pet309 are necessary for translation but not for stability of the mitochondrial COX1 mRNA in yeast. J Biol Chem 283:1472–1479

    Article  PubMed  Google Scholar 

  • Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva MA, O’Rourke TW, Siede W, Shadel GS (2005) The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 16:3010–3018

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) PET genes of Saccharomyces cerevisiae. Microbiol Rev 54:211–225

    PubMed  CAS  Google Scholar 

  • Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Zuo XM, Clark-Walker GD, Chen XJ (2002) The mitochondrial nucleoid protein, Mgm101p, of Saccharomyces cerevisiae is involved in the maintenance of ρ+ and ori/rep-devoid petite genomes but is not required for hypersuppressive ρ- mtDNA. Genetics 160:1389–1400

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Bequette, Dr. R. C. Sizemore, Dr. B. Patlolla, Dr. K. McGee, Dr. L. Johnson, Dr. G. M. Santangelo and Dr. G. Shearer for their support and encouragement. This work was funded by Public Health Service Grant 5P20RR016476 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Ignacio Moreno or Marta A. Piva.

Additional information

Communicated by L. Tomaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, J.I., Buie, K.S., Price, R.E. et al. Ccm1p/Ygr150cp, a pentatricopeptide repeat protein, is essential to remove the fourth intron of both COB and COX1 pre-mRNAs in Saccharomyces cerevisiae . Curr Genet 55, 475–484 (2009). https://doi.org/10.1007/s00294-009-0260-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0260-z

Keywords

Navigation