Skip to main content
Log in

Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Ericoid endomycorrhizal fungi form intracellular associations with the epidermal root cells of plants belonging to Ericales. In natural environments, these fungi increase the ability of their host plants to colonise soils polluted with toxic metals, although the underlying mechanisms are not clearly understood. Genetic transformation is a powerful tool to study the function of specific genes involved in the interaction of symbiotic fungi with the host plants and with the environment. Here, we investigated the possibility to genetically transform an ericoid endomycorrhizal strain. A metal tolerant mycorrhizal Oidiodendron maius strain isolated from a contaminated area was chosen to develop the transformation system. Two different protocols were used: protoplasts and Agrobacterium-mediated transformation. Stable transformants were obtained with both techniques. They remained competent for mycorrhizal formation and GFP-transformed fungi were visualised in planta. This is the first report of stable transformation of an ericoid endomycorrhizal fungus. The protocol set up could represent a good starting point for the identification of genes important in the ericoid mycorrhiza formation and in the understanding of how this symbiosis is established and functions. The success in the genetic transformation of this strain will allow us to better define its potential use in bioremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Amey RC, Athey-Pollard A, Burns C, Mills PR, Bailey A, Foster GD (2002) PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycol Res 106:4–11

    Article  Google Scholar 

  • Bae YS, Knudsen GR (2000) Cotransformation of Trichoderma harzianum with beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl Environ Microbiol 66:810–815

    Article  PubMed  CAS  Google Scholar 

  • Barret V, Dixon RK, Lemke PA (1990) Genetic transformation of a mycorrhizal fungus. Appl Microbiol Biotechnol 33:313–316

    Article  Google Scholar 

  • Basse CW, Stumpfler S, Kahman R (2000) Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase. Evidence for negative as well as positive regulation. Mol Cell Biol 20:329–339

    PubMed  CAS  Google Scholar 

  • Bergero R, Harrier LA, Franken P (2003) Reporter genes: applications to the study of arbuscolar mycorrhizal (AM) fungi and their symbiotic interactions with plant roots. Plant Soil 255:143–155

    Article  CAS  Google Scholar 

  • Bills SN, Podilia GK, Hiremath ST (1999) Genetic transformation of the ectomycorrhizal fungus Laccaria bicolor for use as a biological control agent. Mycol Res 91:237– 242

    Article  Google Scholar 

  • Bills SN, Richter DL, Podila GK (1995) Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment. Mycol Res 99:557–561

    Article  Google Scholar 

  • Bloemberg GV, O’Toole GA, Lugtenberg BJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551

    PubMed  CAS  Google Scholar 

  • Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofuorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  PubMed  CAS  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae VIII. The role of the mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209

    Article  CAS  Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Hsiang T, Goodwin PH (2003) Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. J Microbiol Methods 53:113–122

    Article  PubMed  CAS  Google Scholar 

  • Clergeot PH, Gorgeus M, Cots J, Laurans F, Latorse MP, Pépin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by fungal pathogen M. grisea. Proc Natl Acad Sci USA 98:6963–6968

    Article  PubMed  CAS  Google Scholar 

  • Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett 220:141–148

    Article  PubMed  CAS  Google Scholar 

  • Combier JP, Melayah D, Raffier C, Pepin R, Marmeisse R, Gay G (2004) Nonmycorrhizal (myc-) mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis. Mol Plant Microbe Interact 17:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  PubMed  Google Scholar 

  • Forbes PJ, Millian S, Hooker JE, Harrier LA (1998) Transformation of the arbuscular mycorrhiza Gigaspora rosea by particle bombardment. Mycol Res 102:497–501

    Article  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Baker GD (2005) GFP tagging reveals a novel plant intracellular apparatus preparing epidermal infection by arbuscolar mycorrhizal fungi. Plant Cell 17:3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Grall S, Manceau C (2003) Colonization of Vitis vinifera by a green fluorescence protein-labelled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine. Appl Environ Microbiol 69:1904–1912

    Article  PubMed  CAS  Google Scholar 

  • Greszta J, Braniewski S, Chrzanowska E, Nosek A, Chlodny J, Zwolinski J (1987) The influence of dusts from chosen industrial lands on particular links of forest ecosystems of the Niepolomice Forest. Ekol Polska 35:291–326

    Google Scholar 

  • Grimaldi B, de Raaf MA, Filetici P, Ottonello S, Ballario P (2005) Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 48:69–74

    Article  PubMed  CAS  Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 4:183–188

    Article  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Harrier LA, Millam S (2001) Biolistic transformation of arbuscular mycorrhizal fungi. Progress and perspectives. Mol Biotechnol 18:25–33

    Article  PubMed  CAS  Google Scholar 

  • Harrier LA, Millam S, Franken P (2002) Biolistic transformation of AM fungi: advances and applications. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology: from genes to bioproducts— achievements and hurdles in arbuscular mycorrhizal research. Birkhäuser Verlag, Basel, pp S9–7l

    Google Scholar 

  • Hu G, St. Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387

    Article  PubMed  CAS  Google Scholar 

  • Kemppainen M, Circosta A, Tagu D, Martin F, Pardo AG (2005) Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N. Mycorrhiza 16:19–22

    Article  PubMed  CAS  Google Scholar 

  • Jansson JK (2003) Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6:310–316

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK (2004) In vivo study of Trichoderma–pathogen–plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 70:3073–3081

    Article  PubMed  CAS  Google Scholar 

  • Marmeisse R, Gay G, Debaud JC, Cassaelton LA (1992) Genetic trasformation of the symbiotic basiodiomycete fungus Hebeloma cylindrosporum. Curr Genet 22:41–45

    Article  PubMed  CAS  Google Scholar 

  • Marmeisse R, Guidot A, Gay G, Lambilliotte R, Sentenac H, Combier JP, Melayah D, Fraissinet-Tachet L, Debaud JC (2004) Hebeloma cylindrosporum- a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol 163:481–498

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  • Martino E, Coisson JD, Lacourt I, Favaron F, Bonfante P, Perotto S (2000a) Influence of heavy metals on production and activity of pectinolytic enzymes ericoid mycorrhizal fungi. Mycol Res 104:825–833

    Article  CAS  Google Scholar 

  • Martino E, Turnau K, Girlanda M, Bonfante P, Perotto S (2000b) Ericoid mycorrhizal fungi from heavy metals polluted soils: their identification and growth in the presence of heavy metals. Mycol Res 104:338–344

    Article  CAS  Google Scholar 

  • Martino E, Franco B, Piccoli G, Stocchi V, Perotto S (2002) Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius. Mol Cell Biochem 231:179–185

    Article  PubMed  CAS  Google Scholar 

  • Martino E, Perotto S, Pearson R, Gadd GM (2003) Solubilization of insolubile inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen L, Sarrocco S, Lubeck M, Jensen DF (2003) Expression of the red fuorescent protein DsRed-Express in filamentous ascomycete fungi. FEMS Microbiol Lett 223:135–139

    Article  PubMed  CAS  Google Scholar 

  • Morley GF, Sayer JA, Wilkinson SC, Gharieb MM, Gadd GM (1996) Sequestration, mobilization and transformation of metals and metalloids. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, pp 235–256

    Google Scholar 

  • Müller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D (2006) Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 16:437–442

    Article  PubMed  CAS  Google Scholar 

  • Mullins ED, Kang S (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci 58:2043–2052

    Article  PubMed  CAS  Google Scholar 

  • Olmedo-Monfil V, Cortes-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation: key concepts and applications. In: Balbas P, Lorence A (eds) Recombinant gene expression reviews and protocols, 2nd edn (series methods in molecular biology). Humana Press, Totowa, pp 297–313

  • Pardo AG, Hanif M, Rauaskoski M, Gorfer M (2002) Genetic trasformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol Res 106:132–137

    Article  CAS  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscolar mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    Article  PubMed  CAS  Google Scholar 

  • Pearson V, Read DJ (1973) The biology of mycorrhiza in the Ericaceae. I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic cultures. New Phytol 72:371–379

    Article  Google Scholar 

  • Perotto S, Peretto R, Faccio A, Schubert A, Varma A, Bonfante P (1995) Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot 73:557–568

    Article  Google Scholar 

  • Perotto S, Actis-Perino E, Perugini J, Bonfante P (1996) Molecular diversity of fungi from ericoid mycorrhizal roots. Mol Ecol 5:123–131

    CAS  Google Scholar 

  • Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53

    Article  CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    Article  PubMed  CAS  Google Scholar 

  • Ramos HJ, Roncato-Maccari LDB, Souza EM, Soares-Ramos JRL, Hungria M, Pedrosa FO (2002) Monitoring Azospirillum–wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 97:243–252

    Article  PubMed  CAS  Google Scholar 

  • Rao RN, Allen NE, Hobbs JN Jr, Alborn WE Jr, Kirst HA, Paschal JW (1983) Genetic and enzymatic basis of hygromycin B resistance in Escherichia coli. Antimicrob Agents Chemother 24:689–695

    PubMed  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–390

    Article  Google Scholar 

  • Read DJ (1993) Mycorrhizas in plant communities. Adv Plant Pathol 9:1–31

    Google Scholar 

  • Rodriguez-Tovar AV, Ruiz-Medrano, Herrera-Martinez A, Berrera-Figueroa E, Marquez-Reyes EB, Hidalgo-Lara Eugenia (2005) Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methods 63:45–54

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Dìez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. 2nd edn. Academic, London

    Google Scholar 

  • Stuurman N, Pacios Bras C, Schlaman HR, Wijfjes AH, Bloemberg G, Spaink HP (2000) Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. Mol Plant Microbe Interact 13:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Tombolini R, Jansson JK (1998) Monitoring of GFP-tagged bacterial cells. Methods Mol Biol 102:285–298

    PubMed  CAS  Google Scholar 

  • Tombolini R, Van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    PubMed  CAS  Google Scholar 

  • Turnau K (1988) The influence of industrial dust on the mycoflora of Pino-Quercetum forest near Cracow. III. The influence of industrial dust on the mycorrhiza of Vaccinium myrtillus. Scientific papers of Krakow Agricultural Academy 226:135–145

    Google Scholar 

  • Vallino M, Drogo V, Abba S, Perotto S (2005) Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentration. Mycorrhiza 15:333–344

    Article  PubMed  CAS  Google Scholar 

  • Wegel E, Schauser L, Sandal N, Stougaard J, Parniske M (1998) Mycorrhiza Mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol Plant Microbe Interact 11:933–936

    Article  CAS  Google Scholar 

  • Woestemeyer A, Woestemeyer J (1998) Fungal protoplasts: relics or modern objects of molecular research? Microbiol Res 153:97–104

    CAS  Google Scholar 

  • Yakoby N, Zhou R, Kobiler A, Dinoor A, Prusky D (2001) Development of Colletotrichum gloeosporoides restriction enzyme-mediated integration mutants as biocontrol agents against anthracnose disease in avocado fruits. Phytopathology 91:143–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Andy Bailey (Bristol) for the kind gift of LBA 1100 and LBA 1126 A. tumefaciens strains and the pUR 5750 and pBIN7-1 plasmids; Dr. Andrea Genre (Department of Plant Biology, University of Turin) for assistance with confocal microscopy and the Accademia dei Lincei (Roma) for financial support (to EM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Martino.

Additional information

Communicated by U. Kües.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martino, E., Murat, C., Vallino, M. et al. Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Curr Genet 52, 65–75 (2007). https://doi.org/10.1007/s00294-007-0139-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0139-9

Keywords

Navigation