Skip to main content

Advertisement

Log in

Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Lignin peroxidase (LiP) is the first enzyme connected to oxidative breakdown of the aromatic plant heteropolymer lignin and related xenobiotics. However, this extracellular enzyme has been described in only a few species of wood-decaying basidiomycetous fungi. The white rot basidiomycete Phlebia radiata 79 readily produces a versatile set of lignin-oxidizing enzymes including lignin and manganese peroxidases (LiPs and MnPs) and laccases. Here we describe genomic and primary structure of two new LiP-encoding genes, Pr-lip1 and Pr-lip4, and genomic characterization for isozyme LiP3/LIII of P. radiata, encoded by the gene depicted Pr-lip3. Pr-lip1 and Pr-lip4 code for 370- and 361-amino-acid long proteins beginning with 26- and 24-amino-acid secretion pre-propeptides, respectively. Translated LiP1 and LiP4 share the highest protein sequence identity (74 and 86%) with P. radiata LiP3, and 70% identity with the one deduced LiP from Bjerkandera adusta. The three P. radiata LiP sequences form a coherent phylogenetic cluster, which is further supported by similarities within gene organization interrupted by 11-introns. To find out the significance of LiP upon fungal growth on natural lignocellulose, such as wood, we studied ligninolytic gene expression on hardwood (milled alder) and softwood (spruce chips). All the LiP-encoding genes were expressed on wood with predominance of Pr-lip3 transcript abundance, in particular on spruce wood chips, where also time-dependent expression of the multiple lip genes was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    Article  PubMed  CAS  Google Scholar 

  • Blodig W, Smith AT, Doyle WA, Piontek K (2001) Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J Mol Biol 305:851–861

    Article  PubMed  CAS  Google Scholar 

  • Bogan BW, Schoenike B, Lamar RT, Cullen D (1996) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703

    PubMed  CAS  Google Scholar 

  • Broda P, Birch PRJ, Brooks PR, Sims PFG (1995) PCR-mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium: substrate-dependent differential expression within gene-families. Appl Environ Microbiol 61:2358–2364

    PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Reporter 11:113–116

    Article  CAS  Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Bettermann A, Kirk TK (1991) Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57:1453–1460

    PubMed  CAS  Google Scholar 

  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105

    Article  PubMed  CAS  Google Scholar 

  • Dresler-Nurmi A, Kaijalainen S, Lindström K, Hatakka A (1999) Grouping of lignin degrading corticioid fungi based on RFLP analysis of 18S rDNA and ITS regions. Mycol Res 103:990–996

    Article  CAS  Google Scholar 

  • Fedorov A, Merican AF, Gilbert W (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci USA 99:16128–16133

    Article  PubMed  CAS  Google Scholar 

  • Gilliland G, Perrin S, Bunn HF (1990) Competitive PCR for quantitation of mRNA. In: Innis MAea (ed) PCR protocols: a guide to methods and applications. Academic., San Diego, pp 60–69

    Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:602–622

    Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology vol 389: ACS symposium series. American Chemical Society, Washington, DC, pp 127–140

  • Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. In: Sigel A, Sigel H (ed) Metalions in biological systems. Marcel Dekker Inc, New York, pp 559–586

    Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enz Microb Technol 34:255–263

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi - production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka A, Buswell JA, Pirhonen TI, Uusi-Rauva AK (1983) Degradation of 14C-labelled lignins by white-rot fungi. In: Higuchi T, Chang H-M, Kirk TK (eds) Recent advances in lignin biodegradation research. UNI Publishers Co., Ltd., Tokyo, pp 176–187

    Google Scholar 

  • Hatakka A, Lundell T, Tervilä-Wilo ALM, Brunow G (1991) Metabolism of nonphenolic beta-O-4 lignin model compounds by the white-rot fungus Phlebia radiata. Appl Microbiol Biotechnol 36:270–277

    Article  CAS  Google Scholar 

  • Hildén K, Martinez AT, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter M (2002) Lignin conversion by manganese peroxidase (MnP). Enz Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538

    PubMed  CAS  Google Scholar 

  • Johansson T, Nyman PO (1996) A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene 170:31–38

    Article  PubMed  CAS  Google Scholar 

  • Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci USA 96:1989–1994

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Asada Y, Oka T, Kuwahara M (1991) Molecular analysis of a Bjerkandera adusta lignin peroxidase gene. Appl Microbiol Biotechnol 35:510–514

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Lamar RT, Schoenike B, Vanden Wymelenberg A, Stewart P, Dietrich DM, Cullen D (1995) Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl Environ Microbiol 61:2122–2126

    PubMed  CAS  Google Scholar 

  • Lugones LG, Scholtmeijer K, Klootwijk R, Wessels JG (1999) Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol Microbiol 32:681–689

    Article  PubMed  CAS  Google Scholar 

  • Lundell T, Leonowicz A, Rogalski J, Hatakka A (1990) Formation and action of lignin-modifying enzymes in cultures of Phlebia radiata supplemented with veratric acid. Appl Environ Microbiol 56:2623–2629

    PubMed  CAS  Google Scholar 

  • Lundell T, Schoemaker H, Hatakka A, Brunow G (1993) New mechanism of the Cα-Cβ cleavage in non-phenolic arylglycerol β-aryl ether lignin substructures catalyzed by lignin peroxidase. Holzforschung 47:219–224

    Article  CAS  Google Scholar 

  • Manubens A, Avila M, Canessa P, Vicuna R (2003) Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet 43:433–438

    Article  PubMed  CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Article  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Sollewijn Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  PubMed  CAS  Google Scholar 

  • Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M (2001) Oxidation of tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 276:22985–22990

    Article  PubMed  CAS  Google Scholar 

  • Moilanen A-M, Lundell T, Vares T, Hatakka A (1996) Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata. Appl Microbiol Biotechnol 45:792–799

    Article  CAS  Google Scholar 

  • Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283

    Article  PubMed  CAS  Google Scholar 

  • Niku-Paavola M-L, Karhunen E, Kantelinen A, Viikari L, Lundell T, Hatakka A (1990) The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. J Biotechnol 13:211–221

    Article  CAS  Google Scholar 

  • Paszczynski A, Huynh V-B, Crawford R (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750–765

    Article  PubMed  CAS  Google Scholar 

  • Piontek K, Glumoff T, Winterhalter K (1993) Low pH crystal structure of glyoxylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett 315:119–124

    Article  PubMed  CAS  Google Scholar 

  • Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 268:4429–4440

    PubMed  CAS  Google Scholar 

  • Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white-rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663

    PubMed  CAS  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1985) Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch Biochem Biophys 241:304–314

    Article  PubMed  CAS  Google Scholar 

  • Ritch TJ, Nipper VJ, Akileswaran L, Smith AJ, Pribnow DG, Gold MH (1991) Lignin peroxidase from the basidiomycete Phanerochaete chrysosporium is synthesized as a preproenzyme. Gene 107:119–126

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo M, Barajas V, Niku-Paavola M-L, Knowles J (1989) A lignin peroxidase-encoding cDNA from the white-rot fungus Phlebia radiata: characterization and expression in Trichoderma reesei. Gene 85:343–351

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker H, Lundell T, Floris R, Glumoff T, Winterhalter K, Piontek K (1994) Do carbohydrates play a role in the lignin peroxidase cycle? Redox catalysis in the endergonic region of the driving force. Bioorg Med Chem 2:509–519

    Article  PubMed  CAS  Google Scholar 

  • Stewart P, Cullen D (1999) Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol 181:3427–3432

    PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Article  PubMed  CAS  Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl Environ Microbiol 61:3515–3520

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the European Commission project QLK3-1999-00590 (PELAS), University of Helsinki (research grant #2108015 to T.L.), Academy of Finland (grant #53305 to the Center of Excellence on Microbial Resources; research grant #205027 to K.H.) and positions from the Viikki Graduate School of Biosciences (VGSB) to M.M. and T.H., which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taina Lundell.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildén, K.S., Mäkelä, M.R., Hakala, T.K. et al. Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata . Curr Genet 49, 97–105 (2006). https://doi.org/10.1007/s00294-005-0045-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0045-y

Keywords

Navigation