Skip to main content

Advertisement

Log in

Ditercalinium chloride, a pro-anticancer drug, intimately associates with mammalian mitochondrial DNA and inhibits its replication

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract.

Ditercalinium chloride was originally synthesized for use as an anticancer drug and was then found to deplete mitochondrial DNA. Ethidium bromide is widely used to deplete mitochondrial DNA and produce mitochondrial DNA-less cell lines. Although ethidium bromide is used in the case of human cell lines, it frequently fails to deplete mitochondrial DNA in mouse cells. In contrast, ditercalinium chloride can deplete mitochondrial DNA in both mouse and human cells. However, little is known of the mechanisms by which ditercalinium chloride depletes mitochondrial DNA. Here, we show that ditercalinium chloride inhibits human DNA polymerase gamma activity as efficiently as does ethidium bromide. Ethidium bromide accumulates much less in mouse B82 cells, as compared with findings in human HeLa cells, whereas ditercalinium chloride accumulates in both to a similar extent. This poor accumulation of ethidium bromide may, in part, account for the resistance. Ethidium bromide distributes diffusely in the mitochondria of HeLa cells, while ditercalinium chloride distributes granularly and hence may be strongly associated with mitochondrial DNA. Each granular spot presumably represents one mitochondrial DNA nucleoid. In support of this idea, ditercalinium chloride co-localizes with Twinkle, a mitochondrial helicase and is assumed to associate with mitochondrial DNA. This close association of ditercalinium chloride with mitochondrial DNA may contribute to the mitochondrial DNA-depleting activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3A, B.
Fig. 4A–C.
Fig. 5A–D.

Similar content being viewed by others

References

  • Bendirdjian JP, Delaporte C, Roques BP, Jacquemin-Sablon A (1984) Effects of 7H-pyridocarbazole mono and bifunctional DNA-intercalators on Chinese hamster lung cells in vitro. Biochem Pharmacol 33:3681–3688

    Article  CAS  PubMed  Google Scholar 

  • Carrasco C, Rosu F, Gabelica V, Houssier C, De Pauw E, Garbay-Jaureguiberry C, Roques B, Wilson WD, Chaires JB, Waring MJ, Bailly C (2002) Tight binding of the antitumor drug ditercalinium to quadruplex DNA. Chem Biochem 3:1235–1241

    Article  CAS  Google Scholar 

  • Crow SD, Bailly C, Garbay-Jaureguiberry C, Roques B, Shaw BR, Waring MJ (2002) DNA sequence recognition by the antitumor drug ditercalinium. Biochemistry 41:8672–8682

    Article  CAS  PubMed  Google Scholar 

  • Davis AF, Clayton DA (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 135:883–893

    CAS  PubMed  Google Scholar 

  • Esnault C, Roques BP, Jacquemin-Sablon A, Le Pecq JB (1984) Effects of new antitumor bifunctional intercalators derived from 7H-pyridocarbazole on sensitive and resistant L1210 cells. Cancer Res 44:4355–4360

    CAS  PubMed  Google Scholar 

  • Fellous R, Coulaud D, Abed I el, Roques BP, Le Peck JB, Delain E, Gouyette A (1988) Cytoplasmic accumulation of ditercalinium in rat hepatocytes and induction of mitochondrial damage. Cancer Res 48:6542–6549

    CAS  PubMed  Google Scholar 

  • Hayashi J-I, Tanaka M, Sato W, Ozawa T, Yonekawa H, Kagawa Y, Ohta S (1990) Effects of ethidium bromide treatment of mouse cells on expression and assembly of nuclear-coded subunits of complexes involved in the oxidative phosphorylation. Biochem Biophys Res Commun 167:216–221

    CAS  PubMed  Google Scholar 

  • Hayashi J-I, Takemitsu M, Goto Y, Nonaka I (1994) Human mitochondria and mitochondrial genome function as a single dynamic unit. J Cell Biol 125:43–50

    CAS  PubMed  Google Scholar 

  • Inoue K, Ito S, Takai D, Soejima A, Shisa H, LePeck J-B, Segal-Bendirdjian E, Kagawa Y, Hayashi J-I (1997a) Isolation of mtDNA-less mouse cell lines and their application for trapping mouse synaptosomal mtDNA with deletion mutations. J Biol Chem 272:15510–15515

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Takai D, Hosaka H, Ito S, Shitara H, Isobe K, LePeck J-B, Segal-Bendirdjian E, Hayashi J-I (1997b) Isolation and characterization of mitochondrial DNA-less lines from various mammalian cell lines by application of an anticancer drug, ditercalinium. Biochem Biophys Res Commun 239:257–260

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi J-I (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181

    CAS  PubMed  Google Scholar 

  • Kai Y, Miyako K, Muta S, Umeda S, Irie T, Hamasaki N, Takeshige K, Kang D (1999) Mitochondrial DNA replication in human T lymphocytes is regulated primarily at the H-strand termination site. Biochim Biophys Acta 1446:126–134

    Article  CAS  PubMed  Google Scholar 

  • Kang D, Hamasaki N (2002) Maintenance of mitochondrial DNA integrity: repair and degradation. Curr Genet 41:311–322

    Article  CAS  PubMed  Google Scholar 

  • Kang D, Miyako K, Kai Y, Irie T, Takeshige K (1997) In vivo determination of replication origins of human mitochondrial DNA by ligation-mediated polymerase chain reaction. J Biol Chem 272:15275–15279

    CAS  PubMed  Google Scholar 

  • King MP, Attardi G (1996) Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol 264:304–313

    CAS  PubMed  Google Scholar 

  • Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1:417–422

    CAS  PubMed  Google Scholar 

  • Miyakawa I, Sando N, Kawano S, Nakamura S, Kuroiwa T (1987) Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J Cell Sci 88:431–439

    CAS  PubMed  Google Scholar 

  • Miyako K, Kai Y, Irie T, Takeshige K, Kang D (1997) The content of intracellular mitochondrial DNA is decreased by 1-methyl-4-phenylpyridinium ion (MPP+). J Biol Chem 272:9605–9608

    Article  CAS  PubMed  Google Scholar 

  • Miyako K, Irie T, Muta T, Umeda S, Kai Y, Fujiwara T, Takeshige K, Kang D (1999) 1-Methyl-4-phenylpyridinium Ion (MPP+) selectively inhibits the replication of mitochondrial DNA. Eur J Biochem 259:412–418

    Article  CAS  PubMed  Google Scholar 

  • Naviaux RK, Markusic D, Barshop BA, Nyhan WL, Haas RH (1999) Sensitive assay for mitochondrial DNA polymerase gamma. Clin Chem 45:1725–1733

    CAS  PubMed  Google Scholar 

  • Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140

    CAS  PubMed  Google Scholar 

  • Schultz RA, Swoap SJ, McDaniel LD, Zhang B, Koon EC, Garry DJ, Li K, Williams RS (1998) Differential expression of mitochondrial DNA replication factors in mammalian tissues. J Biol Chem 273:3447–3451

    CAS  PubMed  Google Scholar 

  • Segal-Bendirdjian E, Coulaud D, Roques BP, Le Peck JB (1988) Selective loss of mitochondrial DNA after treatment of cells with ditercalinium (NSC 335153), an antitumor bis-intercalating agent. Cancer Res 48:4982–4992

    CAS  PubMed  Google Scholar 

  • Soejima A, Inoue K, Takai D, Kaneko M, Ishihara H, Oka Y, Hayashi J-I (1996) Mitochondrial DNA is required for regulation of glucose-stimulated insulin secretion in a mouse pancreatic beta cell line, MIN6. J Biol Chem 271:26194–26199

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A, Shinagawa H, Hamasaki N, Kang D (2002) Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep 3:451–456

    CAS  PubMed  Google Scholar 

  • Umeda S, Muta T, Ohsato T, Takamatsu C, Hamasaki N, Kang D (2000) The D-loop structure of human mitochondrial DNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a Parkinsonism-causing toxin. Eur J Biochem 267:200–206

    Article  CAS  PubMed  Google Scholar 

  • Urata M, Wakiyama M, Iwase M, Yoneda M, Kinoshita S, Hamasaki N, Kang D (1998) New sensitive method for the detection of the A3243G mutation of human mitochondrial deoxyribonucleic acid in diabetes mellitus patients by ligation-mediated polymerase chain reaction. Clin Chem 44:2088–2093

    CAS  PubMed  Google Scholar 

  • Williams LD, Gao Q (1992) DNA-ditercalinium interactions: implications for recognition of damaged DNA. Biochemistry31:4315–4324

Download references

Acknowledgements.

This work was supported in part by the Uehara Memorial Foundation and Grants-in Aid for Scientific Research from the Ministry of Education, Science, Technology, Sports, and Culture of Japan. Language assistance was provided by M. Ohara. We thank Howy Jacobs for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongchon Kang.

Additional information

Communicated by M. Brunner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamaoto, M., Ohsato, T., Nakada, K. et al. Ditercalinium chloride, a pro-anticancer drug, intimately associates with mammalian mitochondrial DNA and inhibits its replication. Curr Genet 43, 364–370 (2003). https://doi.org/10.1007/s00294-003-0393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0393-4

Keywords

Navigation