Skip to main content
Log in

Genetic manipulation of the pathogenic yeast Candida parapsilosis

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Candida parapsilosis is an important human pathogen, responsible for severe cases of systemic can-didiasis and one of the leading causes of mortality in neonates. In this report, we describe the first system for genetic manipulation of C. parapsilosis. We isolated and subsequently determined DNA sequences of genes encoding galactokinase (CpGALl) and orotidine-5′-phos-phate decarboxylase (CpURA3) from a genomic DNA library of C. parapsilosis by functional complementation of corresponding mutations in Saccharomyces cerevisiae. The predicted protein products, Gallp and Ura3p, displayed a high degree of homology with corresponding sequences of C. albicans and S. cerevisiae, respectively. A collection of galactokinase-deficient (gall) strains of C. parapsilosis was prepared using direct selection of mutagenized cells on media containing 2-deoxy-galac-tose. Additionally, we constructed a plasmid vector carrying CpGALl as a selection marker and a genomic DNA fragment with an autonomously replicating sequence activity that transforms the C. parapsilosis gall mutant strain with high efficiency. This system for genetic transformation of C. parapsilosis may significantly advance the study of this human pathogen, greatly improving our understanding of its biology and virulence, with implications for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnett JA, Payne RW, Yarrow D (1990) Yeasts: characteristics and identification, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  PubMed  CAS  Google Scholar 

  • Camougrand N, Velours G, Guerin M (1986) Resistance of Candida parapsilosis to drugs. Biol Cell 58:71–78

    PubMed  CAS  Google Scholar 

  • Cassone A, De Bernardis F, Pontieri E, Carruba G, Girmenia C, Martino P, Fernandez-Rodriguez M, Quindos G, Ponton J (1995) Biotype diversity of Candida parapsilosis and its relationship to the clinical source and experimental pathogenicity. J Infect Dis 171:967–975

    PubMed  CAS  Google Scholar 

  • Clyne RK, Kelly TJ (1997) Identification of autonomously replicating sequence (ARS) elements in eukaryotic cells. Methods 13:221–233

    Article  PubMed  CAS  Google Scholar 

  • De Viragh PA, Sanglard D, Togni G, Falchetto R, Monod M (1993) Cloning and sequencing of two Candida parapsilosis genes encoding acid proteases. J Gen Microbiol 139:335–342

    PubMed  Google Scholar 

  • Doi M, Homma M, Chindamporn A, Tanaka K (1992) Estimation of chromosome number and size by pulsed-field gel electrophoresis (PFGE) in medically important Candida species. J Gen Microbiol 138:2243–2251

    PubMed  CAS  Google Scholar 

  • Eppink MH, Boeren SA, Vervoort J, Berkel WJ van (1997) Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-depen-dent monooxygenase from Candida parapsilosis CBS604. J Bacteriol 179:6680–6687

    PubMed  CAS  Google Scholar 

  • Fabiani L, Frontali L, Newlon CS (1996) Identification of an essential core element and stimulatory sequences in a Kluyveromyces lactis ARS element, KARS101. Mol Microbiol 19:756–766

    Article  PubMed  CAS  Google Scholar 

  • Fusek M, Smith EA, Monod M, Foundling SI (1993) Candida parapsilosis expresses and secretes two aspartic proteinases. FEBS Lett 327:108–112

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (1995) Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269

    Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  PubMed  CAS  Google Scholar 

  • Gorman JA, Gorman JW, Koltin Y (1992) Direct selection of galactokinase-negative mutants of Candida albicans using 2-deoxy-galactose. Curr Genet 21:203–206

    Article  PubMed  CAS  Google Scholar 

  • Guerin MG, Camougrand NM (1994) Partitioning of electron flux between the respiratory chains of the yeast Candida parapsilosis: parallel working of the two chains. Biochim Biophys Acta 1184:111–117

    Article  PubMed  CAS  Google Scholar 

  • Guerin M, Camougrand N, Caubet R, Zniber S, Velours G, Manon S, Guelin E, Cheyrou A (1989) The second respiratory chain of Candida parapsilosis: a comprehensive study. Biochimie 71:887–902

    Article  PubMed  CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  PubMed  CAS  Google Scholar 

  • Kovac L, Lazowska J, Slonimski PP (1984) A yeast with linear molecules of mitochondrial DNA, Mol Gen Genet 197:420–424

    Article  PubMed  CAS  Google Scholar 

  • Kurtz MB, Cortelyou MW, Miller SM, Lai M, Kirsch DR (1987) Development of autonomously replicating plasmids for Candida albicans. Mol Cell Biol 7:209–217

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Varma A, Edman JC, Bennett JE (1992) Selection of ura5 and ura3 mutants from the two varieties of Cryptococcus neoformans on 5-fluoroorotic acid medium. J Med Vet Mycol 30:61–69

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:273–281

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Wu LC, Rinaldi MG, Lehmann PF (1995) Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol 33:1815–1821

    PubMed  CAS  Google Scholar 

  • Lott TJ, Kuykendall RJ, Welbel SF, Pramanik A, Lasker BA (1993) Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet 23:463–467

    Article  PubMed  CAS  Google Scholar 

  • Maleszka R (1994) The in vivo effects of ethidium bromide on mitochondrial and ribosomal DNA in Candida parapsilosis. Yeast 10:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakman B, Sollewijn Gelpke MD (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie Van Leeuwenhoek 62:181–187

    Article  PubMed  CAS  Google Scholar 

  • Newlon CS, Theis JF (1993) The structure and function of yeast ARS elements. Curr Opin Genet Dev 3:752–758

    Article  PubMed  CAS  Google Scholar 

  • Nosek J, Fukuhara H (1994) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630

    PubMed  CAS  Google Scholar 

  • Nosek J, Dinouel N, Kovac L, Fukuhara H. (1995) Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet 247:61–72

    Article  PubMed  CAS  Google Scholar 

  • Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L (1998) Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184–188

    Article  PubMed  CAS  Google Scholar 

  • Nosek J, Tomaska L, Pagacova B, Fukuhara H (1999) Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 274:8850–8857

    Article  PubMed  CAS  Google Scholar 

  • Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58:440–444

    Article  PubMed  CAS  Google Scholar 

  • Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T (1993) Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21: 4039–4045

    Article  PubMed  CAS  Google Scholar 

  • Phillippsen P, Stotz A, Scherf C (1991) DNA isolation of Saccharomyces cerevisiae. Methods Enzymol 194:169–182

    Article  Google Scholar 

  • Pla J, Perez-Diaz RM, Navarro-Garcia F, Sanchez M, Nombela C (1995) Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165:115–120

    Article  PubMed  CAS  Google Scholar 

  • Platt T (1984) Toxicity of 2-deoxygalactose to Saccharomyces cerevisiae cells constitutively synthesizing galactose-metaboliz-ing enzymes. Mol Cell Biol 4:994–996

    PubMed  CAS  Google Scholar 

  • Rosenberg M, Brawner M, Gorman J, Reff M (1986) Galacto-kinase gene fusion in the study of gene regulation in E. coli, Streptomyces, yeast, and higher cell systems. In: Setlow JK, Hollaender A (eds) Genetic engineering, vol 8. Plenum, New York, pp 151–180

    Google Scholar 

  • Roy B, Meyer SA (1998) Confirmation of the distinct genotype groups within the form species Candida parapsilosis. J Clin Microbiol 36:216–218

    PubMed  CAS  Google Scholar 

  • Rymond BC, Zitomer RS, Schumperli D, Rosenberg M (1983) The expression in yeast of the Escherichia coli galK gene on CY-Clr.galK fusion plasmids. Gene 25:249–262

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Goh TK, Tani Y (1993) High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae. J Bacteriol 175:3556–3362

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Santos M, Colthurst DR, Wills N, McLaughlin CS, Tuite MF (1990). Efficient translation of the UAG termination codon in Candida species. Curr Genet 17:487–491

    Article  PubMed  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks JD (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Stinchcomb DT, Strahl K, Davis RW (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ueda T, Watanabe K (1997) The ‘polysemous’ codon — a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J 16:1122–1134

    Article  PubMed  CAS  Google Scholar 

  • Tomaska L, Nosek J, Fukuhara H (1997) Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 272:3049–3056

    Article  PubMed  CAS  Google Scholar 

  • Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD (2000) Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 28:4479–4487

    Article  PubMed  CAS  Google Scholar 

  • Tomaska L, Makhov AM, Nosek J, Kucejova B, Griffith JD (2001) Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis. J Mol Biol 305:61–69

    Article  PubMed  CAS  Google Scholar 

  • Tuite MF, Bower PA, McLaughlin CS (1986) A novel suppressor tRNA from the dimorphic fungus Candida albicans. Biochim Biophys Acta 866:26–31

    PubMed  CAS  Google Scholar 

  • Vernis L, Abbas A, Chasles M, Gaillardin CM, Brun C, Huberman JA, Fournier P (1997) An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica. Mol Cell Biol 17:1995–2004

    PubMed  CAS  Google Scholar 

  • Weems J J (1992) Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis 14:756–766

    PubMed  Google Scholar 

  • Whelan WL, Kwon-Chung KJ (1988) Auxotrophic heterozygosities and the ploidy of Candida parapsilosis and Candida krusei. J Med Vet Mycol 26:163–171

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Nosek.

Additional information

Communicated by J. Heitman

Published online: 20 September 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosek, J., Adamíkovâ, Ľ., Zemanová, J. et al. Genetic manipulation of the pathogenic yeast Candida parapsilosis . Curr Genet 42, 27–35 (2002). https://doi.org/10.1007/s00294-002-0326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-002-0326-7

Keywords

Navigation