Skip to main content
Log in

Die Rolle von Interleukin-11 beim Osteosarkom

The role of interleukin-11 in osteosarcoma

  • Schwerpunkt: Tumoren des Knochens und der Gelenke
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Das Osteosarkom ist ein meist hochmaligner, mesenchymaler Tumor. Seine Zellen sind definitionsgemäß in der Lage, Osteoid zu bilden, welches zu Tumorknochen ausreifen kann. Osteosarkome bilden häufig hämatogene Metastasen in der Lunge. Die Tumore treten in Europa mit einer Inzidenz von etwa 2 bis 5 Neuerkrankungen pro 1.000.000 Einwohner und Jahr auf. Die Ursachen sind nicht abschließend geklärt, jedoch kann ein Osteosarkom durch eine vorherige Strahlentherapie oder die Exposition mit radioaktiver Strahlung ausgelöst werden. Therapeutisch folgt auf eine neoadjuvante Chemotherapie und eine Operation mit dem Ziel der vollständigen Tumorresektion eine weitere, postoperative Chemotherapie, was zu einer 5‑Jahres-Überlebensrate von etwa 70 % über alle Stadien führt. Untersuchungen der letzten Jahre haben gezeigt, dass die Expression des Oberflächenproteins Interleukin-11-Rezeptor (IL-11R) mit einer schlechten Prognose der Patienten korreliert. Der IL-11R wird von seinem Liganden, dem Zytokin IL-11, aktiviert. IL-11 aktiviert in seinen Zielzellen eine Reihe von Signalwegen und ist als wichtiger Regulator der Knochenhomöostase bekannt. Patienten mit dysfunktionalem IL-11-Signalweg weisen verschiedene Arten der Kraniosynostose auf. Bei Osteosarkomzellen fördert IL-11 die Zellproliferation in vitro. Der IL-11-Signalweg konnte in präklinischen Mausmodellen von primären intratibialen Osteosarkomen zur Reduktion des Tumorwachstums sowie weniger Metastasierung in die Lunge genutzt werden. Dieser Artikel gibt einen Überblick über die Häufigkeit, Klassifikation und Ätiologie des Osteosarkoms und führt in die grundlegende Biologie des Zytokins IL-11 ein. Er beschreibt außerdem die bisherigen Erkenntnisse zur Rolle von IL-11 beim Osteosarkom und zeigt mögliche therapeutische Optionen auf.

Abstract

Osteosarcoma is an often highly malignant mesenchymal tumor. By definition, osteosarcoma cells are able to form osteoid, which can mature into tumor bone. Osteosarcoma metastasizes preferentially to the lung. In Europe, the incidence is between 2 and 5 new diagnoses per 1,000,000 people per year. The underlying mechanisms for osteosarcoma formation are not well understood. However, previous radiotherapy or exposition to nuclear radiation increase the risk of osteosarcoma. Patients are usually treated with a neoadjuvant chemotherapy, followed by complete surgical resection of the tumor and post-surgical chemotherapy, which leads to a five-year survival rate of approximately 70% for all stages. Scientific publications in recent years have shown that expression of the cell surface protein interleukin-11 receptor (IL-11R) correlates with a worse prognosis for patients. The IL-11R is activated by its ligand, the cytokine IL-11. IL-11 activates several intracellular signaling cascades within its target cells and is known to be an important regulator of bone homeostasis. Patients with dysfunctional IL-11 signaling display different forms of craniosynostosis. IL-11 induces proliferation of osteosarcoma cell lines in vitro, and the IL-11 signaling cascade was further used to reduce tumor growth and lung metastasis in preclinical mouse models of primary intratibial osteosarcoma. This article gives a comprehensive overview of the frequency, classification, and etiology of osteosarcoma and describes the basic biology of the cytokine IL-11. Furthermore, it summarizes current knowledge about the functional role of IL-11 in osteosarcoma and lists possible therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Agthe M, Brugge J, Garbers Y et al (2018) Mutations in craniosynostosis patients cause defective Interleukin-11 receptor maturation and drive craniosynostosis-like disease in mice. Cell Rep 25:10–18e5

    CAS  PubMed  Google Scholar 

  2. Amann K, Kain R, Klöppel G (2016) Urogenitale und Endokrine Organe, Gelenke und Skelett. Springer, Berlin Heidelberg

    Google Scholar 

  3. Anninga JK, Gelderblom H, Fiocco M et al (2011) Chemotherapeutic adjuvant treatment for osteosarcoma: Where do we stand? Eur J Cancer 47:2431–2445

    CAS  PubMed  Google Scholar 

  4. Barton VA, Hall MA, Hudson KR et al (2000) Interleukin-11 signals through the formation of a hexameric receptor complex. J Biol Chem 275:36197–36203

    CAS  PubMed  Google Scholar 

  5. Bockhorn J, Dalton R, Nwachukwu C et al (2013) MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun 4:1393

    PubMed  PubMed Central  Google Scholar 

  6. Brischoux-Boucher E, Trimouille A, Baujat G et al (2018) IL11RA-related Crouzon-like autosomal recessive craniosynostosis in 10 new patients: Resemblances and differences. Clin Genet 94:373–380

    CAS  PubMed  Google Scholar 

  7. Chen CC, Wang SS, Lu RH et al (1999) Serum interleukin 10 and interleukin 11 in patients with acute pancreatitis. Gut 45:895–899

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chérel M, Sorel M, Lebeau B et al (1995) Molecular cloning of two isoforms of a receptor for the human hematopoietic cytokine interleukin-11. Blood 86:2534–2540

    PubMed  Google Scholar 

  9. Clarke CM, Fok VT, Gustafson JA et al (2018) Single suture craniosynostosis: Identification of rare variants in genes associated with syndromic forms. Am J Med Genet A 176:290–300

    CAS  PubMed  Google Scholar 

  10. Dahlin DC, Unni KK (1986) Bone tumors : general aspects and data on 8,542 cases. Thomas, Springfield

    Google Scholar 

  11. Draper GJ, Sanders BM, Kingston JE (1986) Second primary neoplasms in patients with retinoblastoma. Br J Cancer 53:661–671

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Du X, Williams D (1997) Interleukin-11: review of molecular, cell biology, and clinical use. Blood 89:3897–3908

    CAS  PubMed  Google Scholar 

  13. Elias JA, Tang W, Horowitz MC (1995) Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology 136:489–498

    CAS  PubMed  Google Scholar 

  14. Farris MK, Chowdhry VK, Lemke S et al (2012) Osteosarcoma following single fraction radiation prophylaxis for heterotopic ossification. Radiat Oncol 7:140

    PubMed  PubMed Central  Google Scholar 

  15. Fletcher CDM, Bridge JA, Hogendoorn PCW et al (2013) WHO classification of tumours of soft tissue and bone. International Agency for Research on Cancer, Lyon

    Google Scholar 

  16. Garbers C, Heink S, Korn T et al (2018) Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov 17:395–412

    CAS  PubMed  Google Scholar 

  17. Garbers C, Hermanns H, Schaper F et al (2012) Plasticity and cross-talk of Interleukin 6‑type cytokines. Cytokine Growth Factor Rev 23:85–97

    CAS  PubMed  Google Scholar 

  18. Garbers C, Scheller J (2013) Interleukin‑6 and interleukin-11: same same but different. Biol Chem 394:1145–1161

    CAS  PubMed  Google Scholar 

  19. Hauben EI, Weeden S, Pringle J et al (2002) Does the histological subtype of high-grade central osteosarcoma influence the response to treatment with chemotherapy and does it affect overall survival? A study on 570 patients of two consecutive trials of the European Osteosarcoma Intergroup. Eur J Cancer 38:1218–1225

    CAS  PubMed  Google Scholar 

  20. Heinrich PC, Behrmann I, Haan S et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hjertner O, Torgersen ML, Seidel C et al (1999) Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. Blood 94:3883–3888

    CAS  PubMed  Google Scholar 

  22. Horwood NJ, Elliott J, Martin TJ et al (1998) Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139:4743–4746

    CAS  PubMed  Google Scholar 

  23. Howlett M, Giraud A, Lescesen H et al (2009) The interleukin‑6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology 136:967–977

    CAS  PubMed  Google Scholar 

  24. Huang G, Yu L, Cooper LJ et al (2012) Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res 72:271–281

    CAS  PubMed  Google Scholar 

  25. Johnstone CN, Chand A, Putoczki TL et al (2015) Emerging roles for IL-11 signaling in cancer development and progression: focus on breast cancer. Cytokine Growth Factor Rev 26:489–498

    CAS  PubMed  Google Scholar 

  26. Kawashima I, Ohsumi J, Mita-Honjo K et al (1991) Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. Febs Lett 283:199–202

    CAS  PubMed  Google Scholar 

  27. Keupp K, Li Y, Vargel I et al (2013) Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol Genet Genomic Med 1:223–237

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Korakavi N, Prokop JW, Seaver LH (2019) Evolution of the phenotype of craniosynostosis with dental anomalies syndrome and report of IL11RA variant population frequencies in a Crouzon-like autosomal recessive syndrome. Am J Med Genet A 179:668–673

    CAS  PubMed  Google Scholar 

  29. Kudo O, Sabokbar A, Pocock A et al (2003) Interleukin‑6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32:1–7

    CAS  PubMed  Google Scholar 

  30. Lewis V, Ozawa M, Deavers M et al (2009) The interleukin-11 receptor alpha as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res 69:1995–1999

    CAS  PubMed  Google Scholar 

  31. Lewis VO, Devarajan E, Cardo-Vila M et al (2017) BMTP-11 is active in preclinical models of human osteosarcoma and a candidate targeted drug for clinical translation. Proc Natl Acad Sci U S A 114:8065–8070

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang M, Ma Q, Ding N et al (2019) IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis 10:353

    PubMed  PubMed Central  Google Scholar 

  33. Liu T, Ma Q, Zhang Y et al (2015) Interleukin-11 receptor alpha is overexpressed in human osteosarcoma, and near-infrared-labeled IL-11Ralpha imaging agent could detect osteosarcoma in mouse tumor xenografts. Tumour Biol 36:2369–2375

    CAS  PubMed  Google Scholar 

  34. Lokau J, Agthe M, Flynn CM et al (2017) Proteolytic control of Interleukin-11 and Interleukin‑6 biology. Biochim Biophys Acta 1864:2105–2117

    CAS  Google Scholar 

  35. Lokau J, Agthe M, Garbers C (2016) Generation of soluble Interleukin-11 and Interleukin‑6 receptors: a crucial function for proteases during inflammation. Mediators Inflamm. https://doi.org/10.1155/2016/1785021

    Article  PubMed  PubMed Central  Google Scholar 

  36. Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    CAS  PubMed  Google Scholar 

  37. Nakayama T, Yoshizaki A, Izumida S et al (2007) Expression of interleukin-11 (IL-11) and IL-11 receptor alpha in human gastric carcinoma and IL-11 upregulates the invasive activity of human gastric carcinoma cells. Int J Oncol 30:825–833

    CAS  PubMed  Google Scholar 

  38. Negahdaripour M, Nezafat N, Ghasemi Y (2016) A panoramic review and in silico analysis of IL-11 structure and function. Cytokine Growth Factor Rev 32:41–61

    CAS  PubMed  Google Scholar 

  39. Nieminen P, Morgan N, Fenwick A et al (2011) Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am J Hum Genet 89:67–81

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishina T, Komazawa-Sakon S, Yanaka S et al (2012) Interleukin-11 links oxidative stress and compensatory proliferation. Sci Signal 5:ra5

    PubMed  Google Scholar 

  41. Ostertag H, Jundt G (2010) Knochentumoren mit Kiefertumoren, 3. Aufl.

    Google Scholar 

  42. Ottaviani G, Jaffe N (2009) The epidemiology of osteosarcoma. Cancer Treat Res 152:3–13

    PubMed  Google Scholar 

  43. Paul SR, Bennett F, Calvetti JA et al (1990) Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci U S A 87:7512–7516

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Putoczki T, Ernst M (2010) More than a sidekick: the IL‑6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol 88:1109–1117

    CAS  PubMed  Google Scholar 

  45. Putoczki T, Thiem S, Loving A et al (2013) Interleukin-11 is the dominant IL‑6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24:257–271

    CAS  PubMed  Google Scholar 

  46. Ren L, Wang X, Dong Z et al (2013) Bone metastasis from breast cancer involves elevated IL-11 expression and the gp130/STAT3 pathway. Med Oncol 30:634

    PubMed  Google Scholar 

  47. Romas E, Udagawa N, Zhou H et al (1996) The role of gp130-mediated signals in osteoclast development: regulation of interleukin 11 production by osteoblasts and distribution of its receptor in bone marrow cultures. J Exp Med 183:2581–2591

    CAS  PubMed  Google Scholar 

  48. Saito M, Yoshida K, Hibi M et al (1992) Molecular cloning of a murine IL‑6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J Immunol 148:4066–4071

    CAS  PubMed  Google Scholar 

  49. Savage SA, Mirabello L (2011) Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma 2011:548151

    PubMed  PubMed Central  Google Scholar 

  50. Schafer S, Viswanathan S, Widjaja AA et al (2017) IL11 is a crucial determinant of cardiovascular fibrosis. Nature 552:110–115

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Siitonen HA, Sotkasiira J, Biervliet M et al (2009) The mutation spectrum in RECQL4 diseases. Eur J Hum Genet 17:151–158

    CAS  PubMed  Google Scholar 

  52. Sims NA (2016) Cell-specific paracrine actions of IL‑6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 79:14–23

    CAS  PubMed  Google Scholar 

  53. Sims NA, Jenkins BJ, Nakamura A et al (2005) Interleukin-11 receptor signaling is required for normal bone remodeling. J Bone Miner Res 20:1093–1102

    CAS  PubMed  Google Scholar 

  54. Suen Y, Chang M, Lee SM et al (1994) Regulation of interleukin-11 protein and mRNA expression in neonatal and adult fibroblasts and endothelial cells. Blood 84:4125–4134

    CAS  PubMed  Google Scholar 

  55. Thul PJ, Akesson L, Wiking M et al (2017) A subcellular map of the human proteome. Science 356:eaal3321

    PubMed  Google Scholar 

  56. Trontzas P, Kamper EF, Potamianou A et al (1998) Comparative study of serum and synovial fluid interleukin-11 levels in patients with various arthritides. Clin Biochem 31:673–679

    CAS  PubMed  Google Scholar 

  57. Unni KK, Inwards CY, Bridge JA et al (2005) Tumors of the bones and joints. Armed Forces Institute of Pathology : American Registry of Pathology, Armed Forces Institute of Pathology, Washington, D.C.

    Google Scholar 

  58. Wang JC, Chen C, Lou LH et al (1997) Blood thrombopoietin, IL‑6 and IL-11 levels in patients with agnogenic myeloid metaplasia. Leukemia 11:1827–1832

    CAS  PubMed  Google Scholar 

  59. Winship AL, Van Sinderen M, Donoghue J et al (2016) Targeting Interleukin-11 Receptor‑α Impairs Human Endometrial Cancer Cell Proliferation and Invasion in vitro and Reduces Tumour Growth and Metastasis in vivo. Mol Cancer Ther 15:720–730

    CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken den weiteren Mitgliedern der Arbeitsgruppe für Korrekturen und Kommentare zum Manuskript. Weitere Forschung zu IL-11 im Labor von C. Garbers wird von der Deutschen Forschungsgemeinschaft gefördert (Projektnummer 125440785 – SFB 877 TP A10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Garbers.

Ethics declarations

Interessenkonflikt

C. Garbers hat einen „research grant“ der Firma Corvidia Therapeutics (Waltham, MA, USA) erhalten. J. Lokau und V. Schoeder und geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Schwerpunktherausgeber

A. Roessner, Magdeburg

J. Haybäck, Magdeburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokau, J., Schoeder, V. & Garbers, C. Die Rolle von Interleukin-11 beim Osteosarkom. Pathologe 41, 163–167 (2020). https://doi.org/10.1007/s00292-020-00756-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-020-00756-1

Schlüsselwörter

Keywords

Navigation