Skip to main content
Log in

Postmortale Diagnosestellung bei Morbus Alzheimer

Stadiengliederungen der kennzeichnenden Hirnveränderungen

Post-mortem diagnosis of Alzheimer’s disease

  • Übersichten
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Der Morbus Alzheimer ist eine langsam, jedoch stetig und unaufhaltsam voranschreitende neurodegenerative Erkrankung des menschlichen Zentralnervensystems, die etwa 15% aller über 65-Jährigen betrifft. Im Verlauf der Erkrankung entstehen sowohl intraneuronale als auch extrazelluläre Ablagerungen pathologisch veränderter Proteine. Die intraneuronalen Aggregate bestehen überwiegend aus abnormem tau(τ)-Protein. Sie führen zur Bildung von neurofibrillären Veränderungen in den Perikaryen und von Neuropilfäden in Zellfortsätzen betroffener Neurone. Die Entwicklung der extrazellulären Amyloid-β(Aβ)-Ablagerungen und der intraneuronalen τ-Aggregate vollzieht sich in langsam voranschreitenden Prozessen. Innerhalb der Hirnrinde beginnt die Ablagerung von Aβ im Neokortex, während die ersten neurofibrillären Veränderungen in den allokortikalen Nervenzellen der Regio transentorhinalis zu finden sind. Von hier ausgehend expandieren beide Veränderungen in immer weitere Felder und Regionen. Diese Ausbreitung erlaubt eine Gliederung der pathologischen Veränderungen in Stadien bzw. Phasen, entsprechend dem zunehmenden Schweregrad des klinischen Bildes. Nach dieser Einteilung kann beurteilt werden, inwieweit ein demenzielles Krankheitsbild durch den Morbus Alzheimer verursacht ist.

Summary

Alzheimer’s disease is a slowly but continuously progressive degenerative disorder of the human central nervous system seen in ~15% of elderly people over the age of 65 years. Morphological hallmarks of this process are intra- and extracellular protein aggregates. The intraneuronal protein aggregates are primarily made up of abnormal phosphorylated τ-protein, which builds neurofibrillary tangles, neuropil threads and dystrophic neurites in neuritic plaques. The extracellular deposits consist of amyloid β-protein (Aβ) aggregates showing the characteristics of amyloid fibrils. The evolution of neurofibrillary changes as well as Aβ-deposition in brain regions follows a distinct hierarchical sequence spanning many decades. Aβ deposition begins in the neocortex whereas neurofibrillary pathology starts in the allocortical nerve cells of the transentorhinal region. Both transformations continue to increase in severity and expand into further areas and regions. The hierarchical pattern allows an easily understandable staging of neurofibrillary and Aβ pathology which in turn reflects the clinical gravity of the disease. According to these stages a dementing disorder can be diagnostically attributed to Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a–j
Abb. 3a–d
Abb. 4
Abb. 5a, b
Abb. 6
Abb. 7

Literatur

  1. Akiyama H, Tago H, Itagaki S, McGeer PL (1990) Occurrence of diffuse amyloid deposits in the presubicular parvopyramidal layer in Alzheimer’s disease. Acta Neuropathol 79:537–544

    CAS  PubMed  Google Scholar 

  2. Alzheimer A (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Allg Zschr Psych 64:146–148

    Google Scholar 

  3. Arnold SE, Hyman BT, Flory J et al. (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    CAS  PubMed  Google Scholar 

  4. Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease patients. Neurosci Lett 162:179–182

    Article  CAS  PubMed  Google Scholar 

  5. Bancher C, Grundke-Iqbal I, Iqbal K et al. (1989) Immunoreactivity of neuronal lipofuscin with monoclonal antibodies to the amyloid beta-protein. Neurobiol Aging 10:125–132

    Article  CAS  PubMed  Google Scholar 

  6. Bancher C, Brunner C, Lassmann H et al. (1989) Tau and ubiquitin immunoreactivity at different stages of formation of Alzheimer neurofibrillary tangles. Prog Clin Biol Res 317:837–848

    CAS  PubMed  Google Scholar 

  7. Bobinski M, Wegiel J, Tarnawski M et al. (1997) Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 56:414–420

    CAS  PubMed  Google Scholar 

  8. Bouras C, Hof PR, Giannakopoulos P et al. (1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4:138–150

    CAS  PubMed  Google Scholar 

  9. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    Article  CAS  PubMed  Google Scholar 

  10. Braak H, Braak E (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appl Neurobiol 14:39–44

    CAS  PubMed  Google Scholar 

  11. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  12. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Google Scholar 

  13. Braak H, Braak E, Grundke-Iqbal I, Iqbal K (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 65:351–355

    Article  CAS  PubMed  Google Scholar 

  14. Callahan LM, Vaules WA, Coleman PD (1999) Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J Neuropathol Exp Neurol 58:275–287

    CAS  PubMed  Google Scholar 

  15. Cummings BJ, Cotman CW (1995) Image analysis of beta-amyloid load in Alzheimer’s disease and relation to dementia severity. Lancet 346:1524–1528

    Article  CAS  PubMed  Google Scholar 

  16. Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339

    CAS  PubMed  Google Scholar 

  17. Duyckaerts C, Dickson DW (2003) Neuropathology of Alzheimer’s disease. In: Dickson D (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 47–65

  18. Esiri MM, Hyman BT, Beyreuther K, Masters CL (1997) Ageing and Dementia. In: Graham DI, Lantos PL (eds) Greenfields neuropathology, 6th edition. Arnold, London, pp 153–233

  19. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    CAS  PubMed  Google Scholar 

  20. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465

    Article  CAS  PubMed  Google Scholar 

  21. Goedert M, Spillantini MG, Jakes R et al. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  22. Gold G, Kovari E, Corte G et al. (2001) Clinical validity of A beta-protein deposition staging in brain aging and Alzheimer disease. J Neuropathol Exp Neurol 60:946–952

    CAS  PubMed  Google Scholar 

  23. Gouras GK, Tsai J, Naslund J et al. (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    CAS  PubMed  Google Scholar 

  24. Greenberg SM, Vonsattel JP (1997) Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke 28:1418–1422

    CAS  PubMed  Google Scholar 

  25. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    CAS  PubMed  Google Scholar 

  26. Grundke-Iqbal I, Iqbal K, Tung YC et al. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    CAS  PubMed  Google Scholar 

  27. Grundke-Iqbal I, Iqbal K, Quinlan M et al. (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    CAS  PubMed  Google Scholar 

  28. Hartmann T, Bieger SC, Bruhl B et al. (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat Med 3:1016–1020

    Article  CAS  PubMed  Google Scholar 

  29. Hyman BT, Marzloff K, Arriagada PV (1993) The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol 52:594–600

    CAS  PubMed  Google Scholar 

  30. Irizarry MC, Soriano F, McNamara M et al. (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17:7053–7059

    CAS  PubMed  Google Scholar 

  31. Kalus P, Braak H, Braak E, Bohl J (1989) The presubicular region in Alzheimer’s disease: topography of amyloid deposits and neurofibrillary changes. Brain Res 494:198–203

    Article  CAS  PubMed  Google Scholar 

  32. Lemere CA, Blusztajn JK, Yamaguchi H et al. (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3:16–32

    Article  CAS  PubMed  Google Scholar 

  33. Leverenz JB, Raskind MA (1998) Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp Neurol 150:296–304

    Article  CAS  PubMed  Google Scholar 

  34. Lippa C (2003) Lewy bodies in conditions other than disorders of a-Synuclein. In: Dickson D (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 200–202

  35. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427

    Article  CAS  PubMed  Google Scholar 

  36. Masters CL, Simms G, Weinman NA et al. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    CAS  PubMed  Google Scholar 

  37. McGowan E, Sanders S, Iwatsubo T et al. (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6:231–244

    Article  CAS  PubMed  Google Scholar 

  38. Mirra SS, Heyman A, McKeel D et al. (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    CAS  PubMed  Google Scholar 

  39. Nagy Z, Yilmazer-Hanke DM, Braak H et al. (1998) Assessment of the pathological stages of Alzheimer’s disease in thin paraffin sections: a comparative study. Dement Geriatr Cogn Disord 9:140–144

    Article  CAS  PubMed  Google Scholar 

  40. Naslund J, Haroutunian V, Mohs R et al. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  CAS  PubMed  Google Scholar 

  41. Ohm TG, Muller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64:209–217

    Article  CAS  PubMed  Google Scholar 

  42. Papasozomenos SC (1989) Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab Invest 60:123–137

    CAS  PubMed  Google Scholar 

  43. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and „preclinical“ Alzheimer’s disease. Ann Neurol 45:358–368

    Article  CAS  PubMed  Google Scholar 

  44. Rub U, Del Tredici K, Schultz C et al. (2000) The evolution of Alzheimer’s disease-related cytoskeletal pathology in the human raphe nuclei. Neuropathol Appl Neurobiol 26:553–567

    Article  CAS  PubMed  Google Scholar 

  45. Rudelli RD, Ambler MW, Wisniewski HM (1984) Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol 64:273–281

    CAS  PubMed  Google Scholar 

  46. Sandmann-Keil D, Braak H (2004) Zur postmortalen Diagnose des Morbus Parkinson. Pathologe (in press)

  47. Sassin I, Schultz C, Thal DR et al. (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol (Berl) 100:259–269

    Article  CAS  PubMed  Google Scholar 

  48. Scholz W (1938) Studien zur Pathologie der Hirngefäße. II. Die drusige Entartung der Hirnarterien und -capillaren. (Eine Form seniler Gefäßerkrankung). Z Ges Neurol Psychiatr 4:694–715

    Google Scholar 

  49. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi RH, Milner TA, Li F et al. (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879

    CAS  PubMed  Google Scholar 

  51. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  52. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer’s disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301

    PubMed  Google Scholar 

  53. Thal DR, Sassin I, Schultz C et al. (1999) Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol 58:210–216

    CAS  PubMed  Google Scholar 

  54. Thal DR, Arendt T, Waldmann G et al. (1998) Progression of neurofibrillary changes and PHF-tau in end-stage Alzheimer’s disease is different from plaque and cortical microglial pathology. Neurobiol Aging 19:517–525

    Article  CAS  PubMed  Google Scholar 

  55. Thal DR, Holzer M, Rüb U et al. (2000) Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp Neurol 163:98–110

    Article  CAS  PubMed  Google Scholar 

  56. Thal DR, Rüb U, Schultz C et al. (2000) Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    CAS  PubMed  Google Scholar 

  57. The National Institute on Aging (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S1–S2

    Article  PubMed  Google Scholar 

  58. Trojanowski JQ, Lee VM (2003) Meeting summary—cell biology of Parkinson’s disease and related neurodegenerative disorders. Sci Aging Knowledge Environ 2003:PE23

    PubMed  Google Scholar 

  59. Vinters HV, Wang ZZ, Secor DL (1996) Brain parenchymal and microvascular amyloid in Alzheimer’s disease. Brain Pathol 6:179–195

    CAS  PubMed  Google Scholar 

  60. Vonsattel JP, Myers RH, Hedley-Whyte ET et al. (1991) Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 30:637–649

    CAS  PubMed  Google Scholar 

  61. Wirths O, Multhaup G, Czech C et al. (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120

    Article  CAS  PubMed  Google Scholar 

  62. Wisniewski HM, Sadowski M, Jakubowska-Sadowska K et al. (1998) Diffuse, lake-like amyloid-beta deposits in the parvopyramidal layer of the presubiculum in Alzheimer disease. J Neuropathol Exp Neurol 57:674–683

    CAS  PubMed  Google Scholar 

  63. Yilmazer-Hanke DM (1998) Alzheimer’s disease. The density of amygdalar neuritic plaques is associated with the severity of neurofibrillary pathology and the degree of beta-amyloid protein deposition in the cerebral cortex. Acta Anat 162:46–55

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit entstand mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft, des Bundesministeriums für Forschung, Bildung und Technologie und der BONFOR-Forschungsförderung der Universität Bonn. Der besondere Dank der Autoren gebührt Frau I. Szasz und Herrn U. Klatt für die Anfertigung der Graphiken und der phototechnischen Arbeiten.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Thal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thal, D.R., Braak, H. Postmortale Diagnosestellung bei Morbus Alzheimer. Pathologe 26, 201–213 (2005). https://doi.org/10.1007/s00292-004-0695-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-004-0695-4

Schlüsselwörter

Keywords

Navigation