Skip to main content
Log in

Thermal and dielectric properties of flexible polyimide nanocomposites with functionalized nanodiamond and silver nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, amine groups were first modified to diamond and silver nanoparticles using APTMS to improve their homogeneous dispersion and compatibility in polyamic acid. Flexible polyimide nanocomposite films were successfully prepared by adding modified nanodiamond and silver nanoparticles to 4,4′-(1,3-phenylenedioxy) dianiline and benzophenone-3,3′,4,4′-tetracarboxylic dianhydrides with different proportions. The effects of added amine-modified nanoparticles on dielectric constant and thermal stability were investigated. With SEM analysis, nanoparticles were homogeneously distributed on the polyimide surface and the presence of Si atom resulting from APTMS modification is clearly seen with the SEM-EDAX results. Considering the thermal resistance, the maximum decomposition temperature of the nano particle-free PI film was found to be 501 °C, while the thermal decomposition temperatures of the PI nanocomposite film that contains 1% m-Ag and the PI film that contains 5% m-ND, 502 °C and 505 °C, respectively. Also, it was seen that the dielectric constants of the prepared nanocomposite films that contain m-Ag NP decrease with increasing m-Ag NP ratio, and the dielectric constants of the films that contain m-ND increase with increasing m-ND ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma L, Wang Y, Xu X, Wang Y, Wang C (2021) Structural evolution and thermal conductivity of flxible graphite fims prepared by carboxylic graphene/polyimide. Ceram Int 47:1076–1085

    Article  CAS  Google Scholar 

  2. Zhou Y, Wu S, Liu F (2019) High-performance polyimide nanocomposites with polydopaminecoated copper nanoparticles and nanowires for electronic applications. Mater Lett 237:19–21

    Article  CAS  Google Scholar 

  3. Kim D-G, Kim J, Jung S-B, Kim Y-S, Kim J-W (2016) Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor. Appl Surf Sci 380:223–228

    Article  CAS  Google Scholar 

  4. Hou X, Mao Y, Zhang R, Fang D (2021) Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection. Chem Eng J 417:129341

    Article  CAS  Google Scholar 

  5. Han S, Li Y, Hao F, Zhou H, Qi S, Tian G, Wu D (2021) Ultra-low dielectric constant polyimides: combined efforts of fluorination and micro-branched crosslink structure. Eur Polym J 143:110206

    Article  CAS  Google Scholar 

  6. Niu Y, Zhang X, Zhao J, Tian Y, Li Y, Yan X (2014) Preparation characterization and properties of amine-functionalized silicon carbide/polyimide composite films. RSC Adv 4:28456–28462

    Article  CAS  Google Scholar 

  7. Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z (2013) Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl Mater Interfaces 5:4878–4891

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Lin B, Yang H, Sun Y, Zhang X (2013) Dramatic enhancement of carbon nanotube dispersion in polyimide composites by a two-step amino functionalization approach. J Polym Sci Part A Polym Chem 51:3449–3457

    Article  CAS  Google Scholar 

  9. Grabowski CA, Fillery SP, Westing NM, Chi C, Meth JS, Durstock MF, Vaia RA (2013) Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix. ACS Appl Mater Interfaces 5:5486–5492

    Article  CAS  PubMed  Google Scholar 

  10. Ngo D, Liu H, Chen Z, Kaya H, Zimudzi TJ, Gin S, Mahadevan T, Du J, Kim SH (2020) Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. NPJ Mater Degrad 4:1

    Article  Google Scholar 

  11. Yang Z, Wang Q, Bai Y, Wang T (2015) AO-resistant shape memory polyimide/silica composites with excellent thermal stability and mechanical properties. RSC Adv 5:72971–72980

    Article  CAS  Google Scholar 

  12. Wang X, Dai Y, Wang W, Ren M, Li B, Fan C, Liu X (2014) Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid films. ACS Appl Mater Interfaces 6:16182–16188

    Article  CAS  PubMed  Google Scholar 

  13. Simpson JO, Clair AKS (1997) Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films 308–309:480–485

    Article  Google Scholar 

  14. Hamciuc C, Hamciuc E, Okrasa L, Kalvachev Y (2012) The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films. J Mater Sci 47:6354–6365

    Article  CAS  Google Scholar 

  15. Wahab MA, Karim MR, Aijaz MO, Salahuddin B, Aziz S, Sina AAI (2021) A study on the interfacial compatibility, microstructure and physico-chemical properties of polyimide/organicallymodified silica nanocomposite membrane. Polymers 13:1328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chapi S (2020) Structural and electrochemical properties of polymer blend based ZnO nanocomposite solid polymer electrolytes by spin-coating method. J Nano- Electron Phys 12:02043–02048

    Article  CAS  Google Scholar 

  17. Babaladimath G, Chapi S (2018) Microwave-assisted synthesis, characterization of electrical conducting and electrochemical xanthan gum-graft-polyaniline. J Mater Sci Mater Electron 29:11159–11166

    Article  CAS  Google Scholar 

  18. Chapi S (2021) Influence of Co2+ on the structure, conductivity, and electrochemical stability of poly(ethylene oxide)-based solid polymer electrolytes: energy storage devices. J Electron Mater 50:1558–1571

    Article  CAS  Google Scholar 

  19. Chapi S, Devendrappa H (2016) Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J Mater Sci Mater Electron 27:11974–11985

    Article  CAS  Google Scholar 

  20. Chapi S, Raghu S, Devendrappa H (2016) Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22:803–814

    Article  CAS  Google Scholar 

  21. Kausar A (2018) Nanodiamond reinforcement in polyamide and polyimide matrices: fundamentals and applications. J Plast Film Sheeting 34:438–457

    Article  Google Scholar 

  22. Qin S, Cui M, Qiu S, Zhao H, Wang L, Zhang A (2018) Dopamine@Nanodiamond as novel reinforcingnanofillers for polyimide with enhanced thermal, mechanical and wear resistance performance. RSC Adv 8:3694–3704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beyler-Çiǧil A, Çakmakçi E, Kahraman MV (2016) Thermal properties of phosphorylated nanodiamond reinforced polyimides. Polym Compos 37:2285–2292

    Article  Google Scholar 

  24. Basak D, Karan S, Mallik B (2007) Significant modifications in the electrical properties of poly(methyl methacrylate) thin films upon dispersion of silver nanoparticles. Solid State Commun 141:483–487

    Article  CAS  Google Scholar 

  25. Bhattarai B, Chakraborty I, Conn BE, Atnagulov A, Pradeep T, Bigioni TP (2017) High-yield paste-based synthesis of thiolate-protected silver nanoparticles. J Phys Chem C 121:10964–10970

    Article  CAS  Google Scholar 

  26. Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X, Li C (2016) Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Appl Mater Interfaces 8:25798–25807

    Article  CAS  PubMed  Google Scholar 

  27. Diantoro M, Loeksmanto W, Tjia M, Gömöry F, Šouc J, Hušek I, Kováč P (2002) AC loss and critical current density in Bi-2223 tapes with oxide additives and reinforced Ag sheaths. Physica C 378–381:1143–1147

    Article  Google Scholar 

  28. Beyler-Çiğil A, Şen F, Birtane H, Kahraman MV (2022) Covalently bounded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: thermal, morphological and antibacterial properties. Polym Bull. https://doi.org/10.1007/s00289-022-04089-2

    Article  Google Scholar 

  29. Haddadi SA, Ramazani ASA, Amini M, Kheradmand A (2018) In-situ preparation and characterization of ultra-high molecular weight polyethylene/diamond nanocomposites using Bi-supported Ziegler-Natta catalyst: effect of nanodiamond silanization. Mater Today Commun 14:53–64

    Article  CAS  Google Scholar 

  30. Ghazizadeh SA, Haddadi M (2016) The effect of sol–gel surface modified silver nanoparticles on the protective properties of the epoxy coating. RSC Adv 6:18996–19006

    Article  CAS  Google Scholar 

  31. Haddadi M, Mahdavian E (2015) Evaluation of the corrosion protection properties of an epoxy coating containing sol–gel surface modified nano-zirconia on mild steel. RSC Adv 5:28769–28777

    Article  CAS  Google Scholar 

  32. Birtane H, Beyler-Çiğil A, Çakmakçı E, Kahraman MV (2017) Thermally stable phosphonium organoclay-reinforced polyimide nanocomposites. Polym Plast Technol Eng 56:443–452

    Article  CAS  Google Scholar 

  33. Birtane H, Esmer K, Madakbas S, Kahraman MV (2019) Structural and dielectric properties of POSS reinforced polyimide nanocomposites. J Macromol Sci-Pure Appl Chem 56:245–252

    Article  CAS  Google Scholar 

  34. Mishra K, Singh RP (2019) Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites. Compos B Eng 162:425–432

    Article  CAS  Google Scholar 

  35. Cakmakci E, Gungor A (2013) Preparation and characterization of flame retardant and proton conducting boron phosphate/polyimide composites. Polym Degrad Stabil 98:927–933

    Article  CAS  Google Scholar 

  36. Hariharan R, Bhuvana S, Malbi MA, Sarojadevi M (2004) Synthesis and characterization of polyimides containing pyridine moiety. J Appl Polym Sci 93:1846–1853

    Article  CAS  Google Scholar 

  37. Im JS, Lee JH, An SK, Song K-W, Jo N-J, Lee J-O, Yoshinaga K (2006) Preparation and properties of polyimide/silica hybrid composites based on polymer-modified colloidal silica. J Appl Polym Sci 100:2053–2061

    Article  CAS  Google Scholar 

  38. Wahab MA, Kim I, Ha C-S (2004) Microstructure and properties of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA)-pphenylene diamine (PDA) polyimide/poly(vinylsilsesquioxane) hybrid nanocomposite films. J Polym Sci Part A Polym Chem 42:5189–5199

    Article  CAS  Google Scholar 

  39. Al-Ajaj IA, Kareem AA (2016) Synthesis and characterization of polyimide thin films obtained by thermal evaporation and solid state reaction. Mater Sci 34:132–136

    CAS  Google Scholar 

  40. Yang W-K, Liu F-F, Li G-M, Zhang E-S, Xue Y-H, Dong Z-X, Qiu X, Ji X (2015) Comparison of different methods for determining the imidization degree of polyimide fibers. Chin J Polym Sci 34:209–220

    Article  Google Scholar 

  41. Morimune-Moriya S, Obara K, Fuseya M, Katanosaka M (2021) Development and characterization of strong, heat-resistant and thermally conductive polyimide/nanodiamond nanocomposites. Polymer 230:124098

    Article  CAS  Google Scholar 

  42. Faghihi K, Hajibeygi M (2013) Synthesis and properties of polyimide/silver nanocomposite containing dibenzalacetone moiety in the main chain. J Saudi Chem Soc 17:419–423

    Article  CAS  Google Scholar 

  43. Zhang F, Li J, Wang T, Huang C, Ji F, Shan L, Zhang G, Sun R, Wong C-P (2021) Fluorinated graphene/polyimide nanocomposites for advanced electronic packaging applications. J Appl Polym Sci 138:49801

    Article  CAS  Google Scholar 

  44. Ma Y, He Z, Liao Z, Xie J, Yue H, Gao X (2021) Facile strategy for low dielectric constant polyimide/silsesquioxane composite films: structural design inspired from nature. J Mater Sci 56:7397–7408

    Article  CAS  Google Scholar 

  45. Dong M, Tong Z, Qi P, Qin L (2021) Enhanced electrical/dielectrical properties of MWCNT@Fe3O4/polyimide flexible composite film aligned by magnetic field. J Mater Sci Mater Electron 32:524–542

    Article  CAS  Google Scholar 

  46. Zhou J, Sun K, Huang S, He X, Cai W, Zhao Y, Li W (2020) Facile fabrication of polyimide-alumina composite coatings by liquid flame spray. Coatings 10:857

    Article  CAS  Google Scholar 

  47. Wu Z, Zhou H, Guo Q, Liu Z, Gong L, Zhang Q, Zhong G, Li Z, Chen Y (2020) Enhanced dielectric properties in polyimide nanocomposites containing barium titanate@polydopamine core-shell nanoparticles. J Alloys Compd 845:156171

    Article  CAS  Google Scholar 

  48. Xie LY, Huang XY, Wu C, Jiang PK (2021) Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21:5897–5906

    Article  Google Scholar 

  49. Fazil S, Bangesh M, Rehman W, Liaqat K, Saeed S, Sajid M, Waseem M, Shakeel M, Bibi I, Guo C-Y (2019) Mechanical, thermal, and dielectric properties of functionalized graphene oxide/polyimide nanocomposite films. Nanomater Nanotechnol 9:1–8

    Article  Google Scholar 

  50. Ru J, Min D, Lanagan M, Li S, Chen G (2021) Enhanced energy storage properties of thermostable sandwich-structured BaTiO3/polyimide nanocomposites with better controlled interfaces. Mater Des 197:109270

    Article  CAS  Google Scholar 

  51. Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane. Express Polym Lett 5:300–310

    Article  Google Scholar 

  52. Aziz SB, Abdullah RM, Kadir MFZ, Ahmed HM (2019) Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim Acta 296:494–507

    Article  CAS  Google Scholar 

  53. Aziz SB (2013) Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22:877–883

    Article  CAS  Google Scholar 

  54. Aziz SB, Abidin ZHZ (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci 132:41774

    Article  Google Scholar 

  55. Aziz SB, Abdullah RM, Rasheed MA, Ahmed HM (2017) Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA:AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers 9:338

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Marmara University, Commission of Scientific Research Project (M.Ü.BAPKO) under grant FEN-B-110618-0338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyfullah Madakbaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birtane, H., Çiğil, A.B., Madakbaş, S. et al. Thermal and dielectric properties of flexible polyimide nanocomposites with functionalized nanodiamond and silver nanoparticles. Polym. Bull. 80, 5353–5371 (2023). https://doi.org/10.1007/s00289-022-04336-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04336-6

Keywords

Navigation