Skip to main content
Log in

TPU nanocomposites tailored by graphene nanoplatelets: the investigation of dispersion approaches and annealing treatment on thermal and mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work investigates the combined effect of the addition of graphene nanoplatelets (GNPs) to the thermoplastic polyurethane copolymer (TPU) and thermal treatment evaluation of the resultant TPU/GNP nanocomposite. Thus, this factor can be evaluated through a variety of dynamic mechanical and thermal measurements. The TPUs as nanocomposites were synthesised by three different approaches of mixing (in situ polymerisation melt compounding and solution mixing) with different weight ratios. Various dispersion processes were employed to obtain better dispersed GNP and thus strong interaction, leading to an effective performance of the TPU/GNP system. X-Ray diffraction and Raman spectroscopy tests displayed the inter-spacing planar quality of GNP nanofillers. Dynamic mechanical analysis revealed that the storage modulus (Eʹ) of TPU nanocomposites how a significant performance particularly at 20 wt.%, 10 wt.% and 5 wt.% of GNP for in situ polymerisation melt compounding and solution mixing, respectively. The microphase-separated structure of TPU nanocomposite samples after thermal treatment (at 80 °C for 4 days) was investigated from for all dispersion methods. Consequently, the overall TPU crystallinity decreased after thermal treatment compared with untreated samples, presuming an ordering suppression of hard segments that involved with GNP. Dispersion and interaction of GNP can play a crucial role in enhancing the thermal and mechanical properties, and thus, a significant improvement for TPU nanocomposites. The tensile test showed significant enhancement with GNP incorporation before thermal treatment. On the contrary, a deterioration in tensile modulus and tensile strength resulted from thermal treatment. A modified Halpin–Tsai model was utilised to predict the mismatch between the empirical and theoretical results. It found a clear diversity in modulus of TPU/GNP samples, in particular at greater GNP content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Batista NL, Helal E, Kurusu RS, Moghimian N, David E, Demarquette NR, Hubert P (2018) Mass-produced graphene—HDPE nanocomposites: thermal, rheological, electrical, and mechanical properties. Polym Eng Sci 59(4):675–682. https://doi.org/10.1002/pen.24981

    Article  CAS  Google Scholar 

  2. Menes O, Cano M, Benedito A, Giménez E, Castell P, Maser WK, Benito AM (2012) The effect of ultra-thin graphite on the morphology and physical properties of thermoplastic polyurethane elastomer composites. Compos Sci Technol 72(13):1595–1601. https://doi.org/10.1016/j.compscitech.2012.06.016

    Article  CAS  Google Scholar 

  3. Huang A, Wang H, Ellingham T, Peng X, Turng L-S (2019) An improved technique for dispersion of natural graphite particles in thermoplastic polyurethane by sub-critical gas-assisted processing. Compos Sci Technol 182:107783. https://doi.org/10.1016/j.compscitech.2019.107783

    Article  CAS  Google Scholar 

  4. Rothon RN (2002) Particulate fillers for polymers, rept. 141 edn, vol 12. iSmithers Rapra Publishing, Shrewsbury, United Kingdom

    Google Scholar 

  5. Xanthos M (2005) Functional fillers for plastics. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Book  Google Scholar 

  6. Mittal V (2010) Optimization of polymer nanocomposite properties. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Book  Google Scholar 

  7. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  CAS  Google Scholar 

  8. Albozahid M, Diwan AA, Habeeb SA (2021) The effect of addition graphite filler on mechanical properties of epoxy material. Egypt J Chem. https://doi.org/10.21608/ejchem.2021.73645.3638

    Article  Google Scholar 

  9. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: A 28:1–63

    Article  Google Scholar 

  10. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575. https://doi.org/10.1177/0021998306067321

    Article  CAS  Google Scholar 

  11. Naji HZN (2019) Fabricating of multiscale composite materials based on TPU reinforced by carbon fibre and graphene nanoplatelets (GNPs). University of Manchester

  12. Al-obad ZKM (2017) Designing PU resins for fibre composite applications. University of Manchester

  13. Prisacariu C (2011) Polyurethane elastomers: from morphology to mechanical aspects. Springer, Vienna

    Book  Google Scholar 

  14. Albozahid MAMa (2018) Design of novel high modulus TPUs for nanocomposite applications. University of Manchester, The UK

  15. Albozahid M, Naji HZ, Alobad ZK, Saiani A (2021) Enhanced mechanical, crystallisation and thermal properties of graphene flake-filled polyurethane nanocomposites: the impact of thermal treatment on the resulting microphase-separated structure. J Polym Res. https://doi.org/10.1007/s10965-021-02660-5

    Article  Google Scholar 

  16. Vakili H, Mohseni M, Makki H, Yahyaei H, Ghanbari H, González A, Irusta L (2020) Self-assembly of a patterned hydrophobic-hydrophilic surface by soft segment microphase separation in a segmented polyurethane: combined experimental study and molecular dynamics simulation. Polymer 195:122424. https://doi.org/10.1016/j.polymer.2020.122424

    Article  CAS  Google Scholar 

  17. Li J-W, Tsai H-A, Lee H-T, Cheng Y-H, Chiu C-W, Suen M-C (2020) Synthesis and properties of side chain fluorinated polyurethanes and evaluation of changes in microphase separation. Prog Org Coat 145:105702. https://doi.org/10.1016/j.porgcoat.2020.105702

    Article  CAS  Google Scholar 

  18. Albozahid M, Naji HZ, Alobad ZK, Saiani A (2021) Effect of OMMT reinforcement on morphology and rheology properties of polyurethane copolymer nanocomposites. J Elastom Plast. https://doi.org/10.1177/00952443211006160

    Article  Google Scholar 

  19. Alobad ZK, Albozahid M, Naji HZ, Alraheem HS, Saiani A (2021) Influence of hard segments content on thermal, morphological and mechanical properties of homo and co-polyurethanes: a comparative study. Arch Mater Sci Eng 1(109):5–16. https://doi.org/10.5604/01.3001.0015.0510

    Article  Google Scholar 

  20. Verma M (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5:97349–97358. https://doi.org/10.1039/C5RA17276D,10.1039/c5ra17276d

    Article  CAS  Google Scholar 

  21. Nina MK, Lamba KAW, Cooper SL (1998) Polyurethanes in biomedical applications, 1st edn. CRC Press

    Google Scholar 

  22. Wang T, Yu W-C, Zhou C-G, Sun W-J, Zhang Y-P, Jia L-C, Gao J-F, Dai K, Yan D-X, Li Z-M (2020) Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Compos B Eng 193:108015. https://doi.org/10.1016/j.compositesb.2020.108015

    Article  CAS  Google Scholar 

  23. Gahlout P, Choudhary V (2020) EMI shielding response of polypyrrole-MWCNT/polyurethane composites. Synth Met 266:116414. https://doi.org/10.1016/j.synthmet.2020.116414

    Article  CAS  Google Scholar 

  24. Guo Y, Yan L, Zeng Z, Chen L, Ma M, Luo R, Bian J, Lin H, Chen D (2020) TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi-walled carbon nanotubes nanofillers. Polym Eng Sci 60(6):1118–1128. https://doi.org/10.1002/pen.25365

    Article  CAS  Google Scholar 

  25. Xiang D, Zhang X, Han Z, Zhang Z, Zhou Z, Harkin-Jones E, Zhang J, Luo X, Wang P, Zhao C, Li Y (2020) 3D printed high-performance flexible strain sensors based on carbon nanotube and graphene nanoplatelet filled polymer composites. J Mater Sci 55(33):15769–15786. https://doi.org/10.1007/s10853-020-05137-w

    Article  CAS  Google Scholar 

  26. Quan H, Zhang B-Q, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A Appl Sci Manuf 40(9):1506–1513. https://doi.org/10.1016/j.compositesa.2009.06.012

    Article  CAS  Google Scholar 

  27. Russo P, Acierno D, Marletta G, Destri GL (2013) Tensile properties, thermal and morphological analysis of thermoplastic polyurethane films reinforced with multiwalled carbon nanotubes. Eur Polym J 49(10):3155–3164. https://doi.org/10.1016/j.eurpolymj.2013.07.021

    Article  CAS  Google Scholar 

  28. Xiang C, Cox PJ, Kukovecz A, Genorio B, Hashim DP, Yan Z, Peng Z, Hwang C-C, Ruan G, Samuel ELG, Sudeep PM, Konya Z, Vajtai XR, Ajayan PM, Tour JM (2013) Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances. ASCnano 7(11):10380–10386

    CAS  Google Scholar 

  29. Gavgani JN, Adelnia H, Gudarzi MM (2013) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254. https://doi.org/10.1007/s10853-013-7698-6

    Article  CAS  Google Scholar 

  30. Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: effect of surface modification of fullerene. Compos B Eng 80:101–107. https://doi.org/10.1016/j.compositesb.2015.05.013

    Article  CAS  Google Scholar 

  31. Shamsi R, Mahyari M, Koosha M (2017) Synthesis of CNT-polyurethane nanocomposites using ester-based polyols with different molecular structure: mechanical, thermal, and electrical properties. J Appl Polym Sci. https://doi.org/10.1002/app.44567

    Article  Google Scholar 

  32. Bera M, Maji PK (2017) Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer 119:118–133. https://doi.org/10.1016/j.polymer.2017.05.019

    Article  CAS  Google Scholar 

  33. Song H, Wang M, Wang Y, Zhang Y, Umar A, Guo Z (2017) Waterborne polyurethane/graphene oxide nanocomposites with enhanced properties. Sci Adv Mater. https://doi.org/10.1166/sam.2017.3118

    Article  Google Scholar 

  34. Amirkiai A, Panahi-Sarmad M, Sadeghi GMM, Arjmand M, Abrisham M, Dehghan P, Nazockdast H (2020) Microstructural design for enhanced mechanical and shape memory performance of polyurethane nanocomposites: role of hybrid nanofillers of montmorillonite and halloysite nanotube. Appl Clay Sci 198:105816. https://doi.org/10.1016/j.clay.2020.105816

    Article  CAS  Google Scholar 

  35. Gholizadeh A, Babaei A, Ziaratban M (2020) Analysis of dual role of nanographene on the microstructure-properties correlation of TPU/NG nanocomposite. Polym Adv Technol 32(3):1150–1161. https://doi.org/10.1002/pat.5162

    Article  CAS  Google Scholar 

  36. Tripathi SN, Srinivasa Rao GS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7:23615–23632. https://doi.org/10.1039/C6RA28392F

    Article  CAS  Google Scholar 

  37. Mittal V, Kim JK, Pal K (2011) Recent advances in elastomeric nanocomposites. Springer, New York

    Book  Google Scholar 

  38. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450. https://doi.org/10.1021/cm100477v

    Article  CAS  Google Scholar 

  39. Rothon RN (2003) Particulate-filled polymer composites, 2nd edn. Rapra Technology Limited, Shrewsbury, UK

    Google Scholar 

  40. Lee S-H, Oh C-R, Lee D-S (2019) Large improvement in the mechanical properties of polyurethane nanocomposites based on a highly concentrated graphite nanoplate/polyol masterbatch. Nanomaterials. https://doi.org/10.3390/nano9030389

    Article  PubMed  PubMed Central  Google Scholar 

  41. Albozahid M, Habeeb SA, Ismael Alhilo NA, Saiani A (2020) The impact of graphene nanofiller loading on the morphology and rheology behaviour of highly rigid polyurethane copolymer. Mater Res Express 7(12):125304. https://doi.org/10.1088/2053-1591/aba5ce

    Article  CAS  Google Scholar 

  42. Saiani A (2004) Origin of multiple melting endotherms in a high hard block content polyurethane. 2. Structural investigation. Macromolecules 37:1411–1421

    Article  CAS  Google Scholar 

  43. Velankar S, Cooper SL (1998) Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length. Macromolecules 31:9181–9192

    Article  CAS  Google Scholar 

  44. Chu B (1992) Microphase separation kinetics in segmented polyurethanes: effects of soft segment length and structure. Macromolecules 25:5724–5729

    Article  CAS  Google Scholar 

  45. Tjong SC, Mai YW (2010) Physical properties and applications of polymer nanocomposites. Woodhead Publishing Limited, Cornwall

    Book  Google Scholar 

  46. Klonos P, Pissis P (2017) Effects of interfacial interactions and of crystallization on rigid amorphous fraction and molecular dynamics in polylactide/silica nanocomposites: a methodological approach. Polymer 112:228–243. https://doi.org/10.1016/j.polymer.2017.02.003

    Article  CAS  Google Scholar 

  47. Alzari V, Sanna V, Biccai S, Caruso T, Politano A, Scaramuzza N, Sechi M, Nuvoli D, Sanna R, Mariani A (2014) Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Compos B Eng 60:29–35. https://doi.org/10.1016/j.compositesb.2013.12.011

    Article  CAS  Google Scholar 

  48. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72(12):1459–1476. https://doi.org/10.1016/j.compscitech.2012.05.005

    Article  CAS  Google Scholar 

  49. Pokharel P, Lee DS (2014) High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chem Eng J 253:356–365. https://doi.org/10.1016/j.cej.2014.05.046

    Article  CAS  Google Scholar 

  50. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58(4):412–417. https://doi.org/10.1002/pi.2549

    Article  CAS  Google Scholar 

  51. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888. https://doi.org/10.1016/j.eurpolymj.2013.10.008

    Article  CAS  Google Scholar 

  52. Sadasivuni KK, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25. https://doi.org/10.1016/j.compscitech.2014.08.025

    Article  CAS  Google Scholar 

  53. Tsiotas AA (2012) The role of the chain extender on the phase behaviour and morphology of high hard block content thermoplastic polyurethanes: thermodynamics–Structures–Properties. PhD, The University of Manchester

  54. Yanagihara Y, Osaka N, Murayama S, Saito H (2013) Thermal annealing behavior and structure development of crystalline hard segment domain in a melt-quenched thermoplastic polyurethane. Polymer 54(8):2183–2189. https://doi.org/10.1016/j.polymer.2013.02.005

    Article  CAS  Google Scholar 

  55. Saiani A, Daunch WA, Verbeke H, Leenslag J-W, Higgins JS (2001) Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation. Macromolecules 34:9059–9068

    Article  CAS  Google Scholar 

  56. Saiani A (2007) Origin of multiple melting endotherms in a high hard block content polyurethane: effect of annealing temperature. Macromolecules 40:7252–7262

    Article  CAS  Google Scholar 

  57. Klinedinst DBY, Yilgör I, Yilgör E, Zhang M, Wilkes GL (2012) The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer 53(23):5358–5366. https://doi.org/10.1016/j.polymer.2012.08.005

    Article  CAS  Google Scholar 

  58. Korley LTJ, Pate BD, Thomas EL, Hammond PT (2006) Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 47(9):3073–3082. https://doi.org/10.1016/j.polymer.2006.02.093

    Article  CAS  Google Scholar 

  59. He Y, Xie D, Zhang X (2014) The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J Mater Sci 49(21):7339–7352. https://doi.org/10.1007/s10853-014-8458-y

    Article  CAS  Google Scholar 

  60. Prolongo SG, Moriche R, Jiménez-Suárez A, Sánchez M, Ureña A (2014) Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur Polym J 61:206–214. https://doi.org/10.1016/j.eurpolymj.2014.09.022

    Article  CAS  Google Scholar 

  61. Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72(6):702–707. https://doi.org/10.1016/j.compscitech.2012.01.020

    Article  CAS  Google Scholar 

  62. Lin J, Zhang P, Zheng C, Wu X, Mao T, Zhu M, Wang H, Feng D, Qian S, Cai X (2014) Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl Surf Sci 316:114–123. https://doi.org/10.1016/j.apsusc.2014.07.058

    Article  CAS  Google Scholar 

  63. Kaveh P, Mortezaei M, Barikani M, Khanbabaei G (2014) Low-temperature flexible polyurethane/graphene oxide nanocomposites: effect of polyols and graphene oxide on physicomechanical properties and gas permeability. Polym-Plast Technol Eng 53(3):278–289. https://doi.org/10.1080/03602559.2013.844241

    Article  CAS  Google Scholar 

  64. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210(15):1247–1254. https://doi.org/10.1002/macp.200900157

    Article  CAS  Google Scholar 

  65. Khan U, May P, O’Neill A, Coleman JN (2010) Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48(14):4035–4041. https://doi.org/10.1016/j.carbon.2010.07.008

    Article  CAS  Google Scholar 

  66. Gresil M, Wang Z, Poutrel QA, Soutis C (2017) Thermal diffusivity mapping of graphene based polymer nanocomposites. Sci Rep 7(1):5536. https://doi.org/10.1038/s41598-017-05866-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hosseini-Sianaki T, Nazockdast H, Salehnia B, Nazockdast E (2015) Microphase separation and hard domain assembly in thermoplastic polyurethane/multiwalled carbon nanotube nanocomposites. Polym Eng Sci 55(9):2163–2173. https://doi.org/10.1002/pen.24101

    Article  CAS  Google Scholar 

  68. Alshammari BA (2014) Processing, structure and properties of poly (ethylene terephthalate)/carbon micro- and nano-composites. PhD, The University of Manchester

  69. Jirakrttidul K (2013) Structure-property relationships in polyurethane-carbon particle nanocomposites. PhD, the University of Manchester

  70. Thakur S, Karak N (2014) Ultratough, ductile, castor oil-based, hyperbranched, polyurethane nanocomposite using functionalized reduced graphene oxide. ACS Sustain Chem Eng 2(5):1195–1202. https://doi.org/10.1021/sc500165d

    Article  CAS  Google Scholar 

  71. Chung YC, Khiem ND, Chun BC (2014) Characterization of a polyurethane copolymer covalently linked to graphite and the influence of graphite on electric conductivity. J Compos Mater 49(14):1689–1703. https://doi.org/10.1177/0021998314539366

    Article  CAS  Google Scholar 

  72. Huang M (2014) Two-way shape memory property and its structural origin of cross-linked poly(3-caprolactone). Royal Soc Chem 4:55483–55494. https://doi.org/10.1039/C4RA09385B

    Article  CAS  Google Scholar 

  73. Choi JT, Kim DH, Ryu KS, Lee H-I, Jeong HM, Shin CM, Kim JH, Kim BK (2011) Functionalized graphene sheet/polyurethane nanocomposites: effect of particle size on physical properties. Macromol Res 19(8):809–814. https://doi.org/10.1007/s13233-011-0801-4

    Article  CAS  Google Scholar 

  74. Lei L, Xia Z, Zhang L, Zhang Y, Zhong L (2016) Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions. Prog Org Coat 97:19–27. https://doi.org/10.1016/j.porgcoat.2016.03.011

    Article  CAS  Google Scholar 

  75. Han S, Chun BC (2014) Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos A Appl Sci Manuf 58:65–72. https://doi.org/10.1016/j.compositesa.2013.11.016

    Article  CAS  Google Scholar 

  76. Wurm A, Ismail M, Kretzschmar B, Pospiech D, Schick C (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43(3):1480–1487. https://doi.org/10.1021/ma902175r

    Article  CAS  Google Scholar 

  77. Karevan M, Kalaitzidou K (2013) Formation of a complex constrained region at the graphite nanoplatelets-polyamide 12 interface. Polymer 54(14):3691–3698. https://doi.org/10.1016/j.polymer.2013.05.019

    Article  CAS  Google Scholar 

  78. Koutsoumpis S, Raftopoulos KN, Oguz O, de Christine MP, de Menceloglu YZ, Pissis P (2017) Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO2 nanocomposites. Soft Matter 13:4580–4590. https://doi.org/10.1039/C7SM00397H,10.1039/c7sm00397h

    Article  CAS  PubMed  Google Scholar 

  79. Weon JI, Sue HJ (2005) Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46(17):6325–6334. https://doi.org/10.1016/j.polymer.2005.05.094

    Article  CAS  Google Scholar 

  80. Russo P, Lavorgna M, Piscitelli F, Acierno D, Di Maio L (2013) Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur Polym J 49(2):379–388. https://doi.org/10.1016/j.eurpolymj.2012.11.008

    Article  CAS  Google Scholar 

  81. Hodgkinson JM (2000) Mechanical testing of advanced fibre composites, 1st edn. Woodhead Publishing Limited, Cambridge, England

    Book  Google Scholar 

  82. Liu M, Zhang C, Tjiu WW, Yang Z, Wang W, Liu T (2013) One-step hybridization of graphene nanoribbons with carbon nanotubes and its strong-yet-ductile thermoplastic polyurethane composites. Polymer 54(12):3124–3130. https://doi.org/10.1016/j.polymer.2013.04.013

    Article  CAS  Google Scholar 

  83. Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Mohamadzadeh Moghadam MH (2015) Characterization of covalently-grafted polyisocyanate chains onto graphene oxide for polyurethane composites with improved mechanical properties. Chem Eng J 281:869–883. https://doi.org/10.1016/j.cej.2015.07.027

    Article  CAS  Google Scholar 

  84. Pokharel P, Choi S, Lee DS (2015) The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Compos A Appl Sci Manuf 69:168–177. https://doi.org/10.1016/j.compositesa.2014.11.010

    Article  CAS  Google Scholar 

  85. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367. https://doi.org/10.1016/j.apsusc.2012.12.028

    Article  CAS  Google Scholar 

  86. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P (2012) Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem 22(14):7010. https://doi.org/10.1039/c2jm16901k

    Article  CAS  Google Scholar 

  87. Appel A-K, Thomann R, Mülhaupt R (2012) Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53(22):4931–4939. https://doi.org/10.1016/j.polymer.2012.09.016

    Article  CAS  Google Scholar 

  88. Zhou K, Gui Z, Hu Y, Jiang S, Tang G (2016) The influence of cobalt oxide–graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites. Compos A Appl Sci Manuf 88:10–18. https://doi.org/10.1016/j.compositesa.2016.05.014

    Article  CAS  Google Scholar 

  89. Vallés C (2014) Few layer graphene–polypropylene nanocomposites: the role of flake diameter. Royal Soc Chem 173:379–390. https://doi.org/10.1039/C4FD00112E

    Article  CAS  Google Scholar 

  90. Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J, Sharif F, Kim J-K (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos A Appl Sci Manuf 49:42–50. https://doi.org/10.1016/j.compositesa.2013.02.005

    Article  CAS  Google Scholar 

  91. Jing Q, Liu W, Pan Y, Silberschmidt VV, Li L, Dong Z (2015) Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Mater Des 85:808–814. https://doi.org/10.1016/j.matdes.2015.07.101

    Article  CAS  Google Scholar 

  92. Li X, Deng H, Li Z, Xiu H, Qi X, Zhang Q, Wang K, Chen F, Fu Q (2015) Graphene/thermoplastic polyurethane nanocomposites: surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos A Appl Sci Manuf 68:264–275. https://doi.org/10.1016/j.compositesa.2014.10.016

    Article  CAS  Google Scholar 

  93. Chou T-W (1992) Microstructural design of fiber composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  94. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  95. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013. https://doi.org/10.1016/s0032-3861(03)00471-3

    Article  CAS  Google Scholar 

  96. Li Y, Hu K, Jiao H, Liu X, Wang Q, Pan G, Zhang X, Wang T (2015) In situpolymerization, thermal, damping, and mechanical properties of multiwalled carbon nanotubes/polyisobutylene-based polyurethane nanocomposites. Polym Compos 36(1):198–203. https://doi.org/10.1002/pc.22930

    Article  CAS  Google Scholar 

  97. Li Z, Young RJ, Wilson NR, Kinloch IA, Vallés C, Li Z (2016) Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos Sci Technol 123:125–133. https://doi.org/10.1016/j.compscitech.2015.12.005

    Article  CAS  Google Scholar 

  98. Yung KC (2006) Modeling young’s modulus of polymer-layered silicate nanocomposites using a modified Halpin-Tsai micromechanical model. J Reinf Plast Compos 25(8):847–861. https://doi.org/10.1177/0731684406065135

    Article  CAS  Google Scholar 

  99. Shokrieh MM, Moshrefzadeh-Sani H (2016) On the constant parameters of Halpin-Tsai equation. Polymer 106:14–20. https://doi.org/10.1016/j.polymer.2016.10.049

    Article  CAS  Google Scholar 

  100. Wilkinson AN, Man Z, Stanford JL, Matikainen P, Clemens ML, Lees GC, Liauw CM (2007) Tensile properties of melt intercalated polyamide 6–Montmorillonite nanocomposites. Compos Sci Technol 67(15–16):3360–3368. https://doi.org/10.1016/j.compscitech.2007.03.024

    Article  CAS  Google Scholar 

  101. Terrones M, Martín O, González M, Pozuelo J, Serrano B, Cabanelas JC, Vega-Díaz SM, Baselga J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23(44):5302–5310. https://doi.org/10.1002/adma.201102036

    Article  CAS  PubMed  Google Scholar 

  102. Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 01(02):30–49. https://doi.org/10.4236/graphene.2012.12005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Materials Department at University of Kufa, faculty of Engineering, to their unlimited support to fulfil this study.

Funding

The financial support from the Ministry of Higher Education and Scientific Research of Iraq (Grant No. 1033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muayad Albozahid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albozahid, M., Naji, H.Z., Alobad, Z.K. et al. TPU nanocomposites tailored by graphene nanoplatelets: the investigation of dispersion approaches and annealing treatment on thermal and mechanical properties. Polym. Bull. 79, 8269–8307 (2022). https://doi.org/10.1007/s00289-021-03898-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03898-1

Keywords

Navigation