Skip to main content
Log in

Highly sensitive folic acid colorimetric sensor enabled by free-standing molecularly imprinted photonic hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Folic acid is an important biological compound for human disease diagnosis. Traditional detection methods of folic acid are mostly time-consuming or dependent on analytical equipment. Here we demonstrate the rapid and colorimetric detection of folic acid using a novel colorimetric sensor enabled by molecularly imprinted photonic hydrogels, which are prepared by the polymerization of precursor solution in the interstitial voids of the polystyrene colloidal crystal and subsequent removal of colloidal crystal and folic acid molecules. As folic acid is instable under the preparation process of molecularly imprinted photonic hydrogels, we introduce folic acid (imprinted molecule) in the form of supramolecular complex with β-CD units to improve its stability and further create stable molecular recognition sites. The folic acid recognition can be directly transferred into a visually perceptible color change due to the highly ordered macroporous structure. With this novel sensory system, the highly selective, high sensitive (as low as 10–12 M), and rapid response (< 60 s) to folic acid is achieved without the use of instruments.

Graphic abstract

A novel folic acid colorimetric sensor enabled by molecularly imprinted photonic hydrogels is successfully prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apodaca DC, Pernites RB, Ponnapati RR, Del Mundo FR, Advincula RC (2011) Electropolymerized Molecularly Imprinted Polymer Films of a Bis-Terthiophene Dendron: Folic Acid Quartz Crystal Microbalance Sensing. ACS appl mater interfaces 3:191–203

    Article  CAS  PubMed  Google Scholar 

  2. Hussain M, Iqbal N, Lieberzeit PA (2013) Acidic and basic polymers for molecularly imprinted folic acid sensors—QCM studies with thin films and nanoparticles. Sensors and Actuators B: Chemical 176:1090–1095

    Article  CAS  Google Scholar 

  3. Gupta K, Pandey A, Gangopadhyay AN, Prasad S, Singh TB, Khanna HD, Upadhyaya VD (2008) Estimation and correlation of serum folic acid levels in spina bifida babies and their mothers. J Pediatr Neurosci 3:134–137

    Article  Google Scholar 

  4. Prasad BB, Tiwari MP, Madhuri R, Sharma PS (2010) Development of a highly sensitive and selective hyphenated technique (molecularly imprinted micro-solid phase extraction fiber–molecularly imprinted polymer fiber sensor) for ultratrace analysis of folic acid. Anal Chim Acta 662:14–22

    Article  CAS  PubMed  Google Scholar 

  5. Ashraf MJ, Cook JR, Rothberg MB (2008) Clinical Utility of Folic Acid Testing for Patients with Anemia or Dementia. J gen intern med 23:824–826

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wallock LM, Tamura T, Mayr CA, Johnston KE, Ames BN, Jacob RA (2001) Fertil Steril 75:252–259

    Article  CAS  PubMed  Google Scholar 

  7. Leporati A, Catellani D, Suman M, Andreoli R, Manini P, Niessen WMA (2005) Anal Chim Acta 531:87–95

    Article  CAS  Google Scholar 

  8. Brusač E, Jeličić ML, Amidžić Klarić D, Nigović B, Turk N, Klarić I, Mornar A (2019) Pharmacokinetic profiling and simultaneous determination of thiopurine immunosuppressants and folic acid by chromatographic methods. Molecules 24(19):3469

    Article  PubMed Central  Google Scholar 

  9. Arcot J, Shrestha AK, Gusanov U (2002) Enzyme protein binding assay for determining folic acid in fortified cereal foods and stability of folic acid under different extraction conditions. Food Control 13:245–252

    Article  CAS  Google Scholar 

  10. Prasad BB, Madhuri R, Tiwari MP, Sharma PS (2010) Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode. Sensors and Actuators B: Chemical 146:321–330

    Article  CAS  Google Scholar 

  11. Karimian N, Zavar MHA, Chamsaz M, Turner APF, Tiwari A (2013) On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. Electrochem Commun 36:92–95

    Article  CAS  Google Scholar 

  12. Ruiyi L, Tinling P, Hongxia C, Jinsong S, Zaijun L (2020) Electrochemical detection of cancer cells in human blood using folic acid and glutamic acid-functionalized graphene quantum dot-palladium@gold as redox probe with excellent electrocatalytic activity and target recognition. Sensors and ActuatorsB: Chemical 309:127709

    Article  Google Scholar 

  13. Hussain S, Zaidi SA, Vikraman D, Kim H-S, Jung J (2019) Facile preparation of molybdenum carbide (Mo2C) nanoparticles and its effective utilization in electrochemical sensing of folic acid via imprinting. Biosens Bioelectron 140:111330

    Article  CAS  PubMed  Google Scholar 

  14. Hu X, An Q, Li G, Tao S, Liu J (2006) Imprinted Photonic Polymers for Chiral Recognition. Angew Chem Int Ed 45:8145–8148

    Article  CAS  Google Scholar 

  15. Wang L-Q, Lin F-Y, Yu L-P (2012) A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 137:3502–3509

    Article  CAS  PubMed  Google Scholar 

  16. Wu Z, Tao CA, Lin C, Shen D, Li G (2008) Label-Free Colorimetric Detection of Trace Atrazine in Aqueous Solution by Using Molecularly Imprinted Photonic Polymers. Chem-A Eur J 14:11358–11368

    Article  CAS  Google Scholar 

  17. Wang Y-F, Fan J, Meng Z-H, Xue M, Qiu L-L (2019) Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal. Anal Methods 11:2875–2879

    Article  CAS  Google Scholar 

  18. Hu X, Li G, Li M, Huang J, Li Y, Gao Y, Zhang Y (2008) Ultrasensitive Specific Stimulant Assay Based on Molecularly Imprinted Photonic Hydrogels. Adv Funct Mater 18:575–583

    Article  CAS  Google Scholar 

  19. Li J, Zhang Z, Xu S, Chen L, Zhou N, Xiong H, Peng H (2011) Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. J Mater Chem 21:19267–19274

    Article  CAS  Google Scholar 

  20. Xu D, Zhu W, Wang C, Tian T, Cui J, Li J, Wang H, Li G (2014) Molecularly Imprinted Photonic Polymers as Sensing Elements for the Creation of Cross-Reactive Sensor Arrays. Chem-A Eur J 20:16620–16625

    Article  CAS  Google Scholar 

  21. Zhou C, Wang T, Liu J, Guo C, Peng Y, Bai J, Liu M, Dong J, Gao N, Ning B (2012) Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol. Analyst 137:4469–4474

    Article  CAS  PubMed  Google Scholar 

  22. Yang Z, Shi D, Chen M, Liu S (2015) Free-standing molecularly imprinted photonic hydrogels based on β-cyclodextrin for the visual detection of 1-tryptophan. Anal Methods 7:8352–8359

    Article  CAS  Google Scholar 

  23. Chen W, Meng Z, Xue M, Shea KJ (2016) Molecular imprinted photonic crystal for sensing of biomolecules. Molecular Imprinting 4:1–12

    Article  Google Scholar 

  24. Chen Q, Shi W, Cheng M, Liao S, Zhou J, Wu Z (2018) Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim Acta 185:55

    Article  Google Scholar 

  25. Moirangthem M, Arts R, Merkx M, Schenning APHJ (2016) An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum. Adv Funct Mater 26:1154–1160

    Article  CAS  Google Scholar 

  26. Qiu X, Chen W, Luo Y, Wang Y, Wang Y, Guo H (2020) Highly sensitive α-amanitin sensor based on molecularly imprinted photonic crystals. Anal Chim Acta 1093:142–149

    Article  CAS  PubMed  Google Scholar 

  27. Wang P, Sun X, Su X, Wang T (2016) Advancements of molecularly imprinted polymers in the food safety field. Analyst 141:3540–3553

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Pan Z, Yuan Y, Sun Z, Ma J, Huang G, Xing F, Gao J (2013) Molecularly imprinted photonic crystals for the direct label-free distinguishing of l-proline and d-proline. Phys Chem Chem Phys 15:17250–17256

    Article  CAS  PubMed  Google Scholar 

  29. Liu X-Y, Fang H-X, Yu L-P (2013) Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta 116:283–289

    Article  CAS  PubMed  Google Scholar 

  30. Griffete N, Frederich H, Maître A, Ravaine S, Chehimi MM, Mangeney C (2012) Inverse Opals of Molecularly Imprinted Hydrogels for the Detection of Bisphenol A and pH Sensing. Langmuir 28:1005–1012

    Article  CAS  PubMed  Google Scholar 

  31. Hu X, Li G, Huang J, Zhang D, Qiu Y (2007) Construction of Self-Reporting Specific Chemical Sensors with High Sensitivity. Adv Mater 19:4327–4332

    Article  CAS  Google Scholar 

  32. Li L, Lin Z, Huang Z, Peng A (2019) Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer. Food Chem 281:57–62

    Article  CAS  PubMed  Google Scholar 

  33. Lu W, Dong X, Qiu L, Yan Z, Meng Z, Xue M, He X, Liu X (2017) Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J hazardous mate 326:130–137

    Article  CAS  Google Scholar 

  34. Deng J, Chen S, Chen J, Ding H, Deng D, Xie Z (2018) Self-Reporting Colorimetric Analysis of Drug Release by Molecular Imprinted Structural Color Contact Lens. ACS appl mater interface 10:34611–34617

    Article  CAS  Google Scholar 

  35. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    Article  CAS  PubMed  Google Scholar 

  36. Dickert FL, Hayden O (1999) Molecular imprinting in chemical sensing. TrAC, Trends Anal Chem 18:192–199

    Article  CAS  Google Scholar 

  37. M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma (2003) Molecular imprinting. Wiely, Mörlenbach, Germany

    Google Scholar 

  38. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  CAS  PubMed  Google Scholar 

  39. Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chem Soc Rev 42:2763–2803

    Article  CAS  PubMed  Google Scholar 

  40. Waterhouse GIN, Waterland MR (2007) Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26:356–368

    Article  CAS  Google Scholar 

  41. Zhang J, Wang L, Lamont DN, Velankar SS, Asher SA (2012) Fabrication of Large-Area Two-Dimensional Colloidal Crystals. Angew Chem 51:6117–6120

    Article  CAS  Google Scholar 

  42. Zhang J, Wang L, Chao X, Velankar SS, Asher SA (2013) Vertical spreading of two-dimensional crystalline colloidal arrays. J Mater Chem C 1:6099–6102

    Article  CAS  Google Scholar 

  43. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  44. Tavakoli J, Tang Y (2017) Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers 9:364

    Article  PubMed Central  Google Scholar 

  45. Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P (2019) Status and future scope of plant-based green hydrogels in biomedical engineering. Appl Mater Today 16:213–246

    Article  Google Scholar 

  46. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic Crystals for Chemical Sensing and Biosensing. Angew Chem Int Ed 53:3318–3335

    Article  CAS  Google Scholar 

  47. Smith NL, Hong Z, Asher SA (2014) Responsive ionic liquid–polymer 2D photonic crystal gas sensors. Analyst 139:6379–6386

    Article  CAS  PubMed  Google Scholar 

  48. Cai Z, Zhang JT, Xue F, Hong Z, Punihaole D, Asher SA (2014) 2D Photonic Crystal Protein Hydrogel Coulometer for Sensing Serum Albumin Ligand Binding. Anal Chem 86:4840–4847

    Article  CAS  PubMed  Google Scholar 

  49. Cai Z, Sasmal A, Liu X, Asher SA (2017) Responsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection. ACS Sensors 2:1474–1481

    Article  CAS  PubMed  Google Scholar 

  50. Arcot J, Shrestha A (2005) Trends in Food Science & Technology. Trends Food Sci Technol 16:253–266

    Article  CAS  Google Scholar 

  51. Ceborska M, Zimnicka M, Pietrzak M, Troć A, Koźbiał M, Lipkowski J (2012) Structural diversity in native cyclodextrins/folic acid complexes – from [2]-rotaxane to exclusion compound. Org biomol chem 10:5186–5188

    Article  CAS  PubMed  Google Scholar 

  52. Ceborska M, Zimnicka M, Wszelaka-Rylik M, Troć A (2016) Characterization of folic acid/native cyclodextrins host–guest complexes in solution. J Mol Struct 1109:114–118

    Article  CAS  Google Scholar 

  53. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv drug deliv rev 59:645–666

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y-Y, Fan X-D (2002) Synthesis and characterization of pH- and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer. Polymer 43:4997–5003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Nature Science Foundation of China (Grant No.21571084), National First-Class Discipline Program of Light Industry Technology and Engineering (LIFE2018-19), MOE & SAFEA for the 111 Project (B13025), Scientific Research Starting Foundation for PhD (BT2015-01), and the Union of Industry-Study-Research in Jiangsu (BY2020441).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanghong Gong or Mingqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary information 1 (DOCX 4706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Gong, F., Yu, Z. et al. Highly sensitive folic acid colorimetric sensor enabled by free-standing molecularly imprinted photonic hydrogels. Polym. Bull. 79, 1857–1871 (2022). https://doi.org/10.1007/s00289-021-03584-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03584-2

Navigation