Skip to main content
Log in

Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was the optimization of the gallic acid (GA) encapsulation efficiency within calcium alginate microparticles by the ionotropic gelation technique, using Box-Behnken design for the surface methodology response. For this purpose, three independent variables were selected: sodium alginate concentration (X1), calcium chloride concentration (X2), and gallic acid concentrations (X3). The influence of each variable on the encapsulation efficiency was evaluated. The optimum conditions to reach maximum encapsulation efficiency were found to be: X1 = 30 g/l (3%, w/v), X2 = 21.63 g/l (2.163%, w/v) and X3 = 15 g/l (1.5%, w/v), respectively. The encapsulation efficiency was determined to be 42.8%. The obtained microbeads were further examined using differential scanning calorimetry (DSC) and Fourier transform infrared (ATR-FTIR), and the inclusion of gallic acid was confirmed. The gallic acid concentration (X3) is the statistically significant factor in the optimization process. In addition, no autoxidation of the gallic acid compound was observed in the formulated calcium alginate microbeads. Scanning electron microscope (SEM) analysis showed that the shape of the particle was spherical for all formulations and their surface is wrinkled. The release study of the gallic acid carried out in an aqueous medium at pH value 6.8, showed that the GA release pattern was fast for all systems studied (85% at 20 min), and the profile of the release was influenced by the size of the calcium alginate microbeads. The obtained results reveal that the calcium alginate microbeads prepared through the ionotropic gelation technique possess great prominent for gallic acid encapsulation as well as its liberation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Soong YY, Barlow PJ (2006) Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem 97:524–530. https://doi.org/10.1016/j.foodchem.2005.05.033

    Article  CAS  Google Scholar 

  2. Aydogdu A, Sumnu G, Sahin S (2019) Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohyd Polym 208:241–250. https://doi.org/10.1016/j.carbpol.2018.12.065

    Article  CAS  Google Scholar 

  3. Omrani Z, Dadkhah TA (2020) New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym Bull 77:2003–2019. https://doi.org/10.1007/s00289-019-02845-5

    Article  CAS  Google Scholar 

  4. Samooel J, Jun HC, Binna K, Hyejeong Y, Zbigniew AK, Cheorun J (2010) Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci 86:520–526. https://doi.org/10.1016/j.meatsci.2010.06.007

    Article  CAS  Google Scholar 

  5. Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N (2007) Antimicrobial gallic acid from caesalpinia mimosoides lamk. Food Chem 100:1044–1048. https://doi.org/10.1016/j.foodchem.2005.11.008

    Article  CAS  Google Scholar 

  6. Punithavathi VR, Prince PSM, Kumar R, Selvakumari J (2011) Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 650:465–471. https://doi.org/10.1016/j.ejphar.2010.08.059

    Article  CAS  PubMed  Google Scholar 

  7. Arunkumar S, Ilango K, Manikandan RS, Ramalakshmi N (2009) Synthesis and anti-inflammatory activity of some novel pyrazole derivatives of gallic acid. E-J Chem 6:S123–S128. https://doi.org/10.1155/2009/128586

    Article  CAS  Google Scholar 

  8. Aranya M, Pensak J, Toshihiro A, Worapaka M, Jiradej M (2010) In vitro anti-aging activities of Terminalia chebula gall extract. Pharmaceutical Biology 48:469–481. https://doi.org/10.3109/13880200903586286

    Article  Google Scholar 

  9. Chinmay P, Samik B, Sumanta D, Athar A, Manish G, Iqbal MS, Pallab M, Susanta SA, Bandyopadhyay U (2010) Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radical Biol Med 49:258–267. https://doi.org/10.1016/j.freeradbiomed.2010.04.013

    Article  CAS  Google Scholar 

  10. Hsieh-Hsun H, Chi-Sen C, Wei-Chi H, Sheng-You L, Cheng-Hsun W, Chau-Jong W (2010) Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol 48:2508–2516. https://doi.org/10.1016/j.fct.2010.06.024

    Article  CAS  Google Scholar 

  11. Fang Z, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21:510–523. https://doi.org/10.1016/j.tifs.2010.08.003

    Article  CAS  Google Scholar 

  12. Li J, Kim SY, Chen X, Park HJ (2016) Calcium-alginate beads loaded with gallic acid: preparation and characterization. LWT Food Sci Technol 68:667–673. https://doi.org/10.1016/j.lwt.2016.01.012

    Article  CAS  Google Scholar 

  13. Yun PN, Simon S, Sudip R, Marija GN, Jianyong J, Conrad OP (2013) Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem 141:3192–3200. https://doi.org/10.1016/j.foodchem.2013.06.018

    Article  CAS  Google Scholar 

  14. Yun PN, Sudip R, Jianyong J, Marija GN, Michel KN, Dongyan L, Siew YQ (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chem 136:1013–1021. https://doi.org/10.1016/j.foodchem.2012.09.010

    Article  CAS  Google Scholar 

  15. Dorniani D, Hussein MZB, Aminu UK, Fakurazi S, Abdul HS, Zalinah A (2012) Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomed 7:5745–5756. https://doi.org/10.2147/IJN.S35746

    Article  CAS  Google Scholar 

  16. Hu H, Nie L, Feng S, Suo J (2013) Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release. Pharmazie 68:401–405. https://doi.org/10.1691/ph.2013.2205

    Article  CAS  PubMed  Google Scholar 

  17. Paz R, Paula G, Reyes N, Chávez J, Santos J (2012) Acetylated starch and inulin as encapsulating agents of gallic acid and their release behaviour in a hydrophilic system. Food Chem 134:1–8. https://doi.org/10.1016/j.foodchem.2012.02.019

    Article  CAS  Google Scholar 

  18. Cleonice GdR, Borges CD, Zambiazi RC, Nunes MR, Benvenutti EV, da Luz SR, D’Avila RF, Rutz JK (2013) Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Ind Crops Prod 46:138–146. https://doi.org/10.1016/j.indcrop.2012.12.053

    Article  CAS  Google Scholar 

  19. Medina-Torres L, GarcÍa-Cruz EE, Calderas F, González Laredo RF, Sánchez-Olivares G, Gallegos-Infante JA, Rocha-Guzmán NE, RodrÍguez-RamÍrez J (2013) Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT Food Sci Technol 50:642–650. https://doi.org/10.1016/j.lwt.2012.07.038

    Article  CAS  Google Scholar 

  20. Nagpal K, Singh SK, Mishra DN (2013) Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for protection against scopolamine-induced amnesia. Drug Delivery 20:112–119. https://doi.org/10.3109/10717544.2013.779330

    Article  CAS  PubMed  Google Scholar 

  21. Singh N, Chawla D, Singh J (2004) Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chem 86:601–608. https://doi.org/10.1016/j.foodchem.2003.10.008

    Article  CAS  Google Scholar 

  22. Stevens CV, Meriggi A, Booten K (2001) Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromol 2:1–16. https://doi.org/10.1021/bm005642t

    Article  CAS  Google Scholar 

  23. Peretz S, Anghel DF, Vasilescu E, Florea-Spiroiu M, Stoian C, Zgherea G (2015) Synthesis, characterization and adsorption properties of alginate porous beads. Polym Bull 72:3169–3182. https://doi.org/10.1007/s00289-015-1459-4

    Article  CAS  Google Scholar 

  24. Pal P, Edathil AA, Banat F (2019) Calcium alginate gel and hard beads for the removal of total organic acid anions and heavy metal ions from industrial lean methyldiethanolamine solvent. Polym Bull 76:103–118. https://doi.org/10.1007/s00289-018-2376-0

    Article  CAS  Google Scholar 

  25. Merakchi A, Bettayeb S, Drouiche N, Adour L, Lounici H (2019) Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution. Polym Bull 76:3535–3554. https://doi.org/10.1007/s00289-018-2557-x

    Article  CAS  Google Scholar 

  26. Li M, Elder T, Buschle-Diller G (2017) Alginate-based polysaccharide beads for cationic contaminant sorption from water. Polym Bull 74:1267–1281. https://doi.org/10.1007/s00289-016-1776-2

    Article  CAS  Google Scholar 

  27. Hu Y, Chen T, Dong X, Mei Z (2015) Preparation and characterization of composite hydrogel beads based on sodium alginate. Polym Bull 72:2857–2869. https://doi.org/10.1007/s00289-015-1440-2

    Article  CAS  Google Scholar 

  28. Guo T, Zhang N, Huang J, Pei Y, Wang F, Tang K (2019) A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym Bull 76:87–102. https://doi.org/10.1007/s00289-018-2377-z

    Article  CAS  Google Scholar 

  29. Loh QL, Wong YY, Choong C (2012) Combinatorial effect of different alginate compositions, polycations, and gelling ions on microcapsule properties. Colloid Polym Sci 290:619–629. https://doi.org/10.1007/s00396-011-2568-8

    Article  CAS  Google Scholar 

  30. Aarstad O, Strand BL, Klepp-Andersen LM, Skjaìšk-Bræk G (2013) Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromol 14:3409–3416. https://doi.org/10.1021/bm400658k

    Article  CAS  Google Scholar 

  31. Nguyen LQT, Okajima M, Mitsumata T, Kan K, Tran HT, Kaneko T (2012) Trivalent metal-mediated gelation of novel supergiant sulfated polysaccharides extracted from Aphanothece stagnina. Colloid Polym Sci 290:163–172. https://doi.org/10.1007/s00396-011-2528-3

    Article  CAS  Google Scholar 

  32. Berraaouan D, Elmiz M, Salhi S, Tahani A (2017) Effect of calcium chloride on rheological behavior of sodium alginate. Adv Mater Proc 2:629–633. https://doi.org/10.5185/amp.2017/893

    Article  Google Scholar 

  33. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917. https://doi.org/10.1002/jps.2600820909

    Article  CAS  PubMed  Google Scholar 

  34. Samaha D, Shehayeb R, Kyriacos S (2009) Modeling and comparison of dissolution profiles of diltiazem modified release formulations. Dissol Technol 16:41–46. https://doi.org/10.14227/DT160209P41

    Article  CAS  Google Scholar 

  35. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y (2003) Microsphere design for the colonic delivery of 5-fluorouracil. J Control Release 90:313–322. https://doi.org/10.1016/S0168-3659(03)00195-0

    Article  CAS  PubMed  Google Scholar 

  36. de Lima Souza J, Chiaregato CG, Faez R (2018) Green Composite based on PHB and montmorillonite for KNO3 and NPK delivery system. J Polym Environ 26:670–679. https://doi.org/10.1007/s10924-017-0979-4

    Article  CAS  Google Scholar 

  37. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceut Drug Res 67:217–223

    CAS  Google Scholar 

  38. Sadoun O, Rezgui F, G’Sell C (2018) Optimization of valsartan encapsulation in biodegradables polyesters using Box-Behnken design. Mater Sci Eng, C 90:189–197. https://doi.org/10.1016/j.msec.2018.04.041

    Article  CAS  Google Scholar 

  39. Behera AL, Patil SV, Sahoo SK (2011) Formulation and characteristics of 5flurouracil microspheres by solvent evaporation method. Int Pharm Pharmaceut Sc 3:32–35

    CAS  Google Scholar 

  40. Patel YL, Sher P, Pawar AP (2006) The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS PharmSciTech. https://doi.org/10.1208/pt070486

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maiti S, Dey P, Kaity S, Ray SMS, Biswanath S (2009) Investigation on processing variables for the preparation of fluconazole-loaded ethyl cellulose microspheres by modified multiple emulsion technique. AAPS PharmSciTech 10:703–715. https://doi.org/10.1208/s12249-009-9257-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Venkatesan P, Manavalan R, Valliappan K (2011) Preparation and evaluation of sustained release loxoprofen loaded microspheres. J Basic Clin Pharm 2:159–15962

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marquette S, Peerboom C, Yates A, Denis L, Goole J, Amighi K (2014) Encapsulation of immunoglobulin G by solid-in-oil-in-water: effect of process parameters on microsphere properties. Eur J Pharm Biopharm 86:393–403. https://doi.org/10.1016/j.ejpb.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  44. Lotfipour F, Mirzaeei S, Maghsoodi M (2012) Evaluation of the effect of CaCl2 and alginate concentrations and hardening time on the characteristics of Lactobacillus acidophilus loaded alginate beads using response surface analysis. Adv Pharmaceut Bull 2:71–78. https://doi.org/10.5681/apb.2012.010

    Article  CAS  Google Scholar 

  45. Blandino A, Macías M, Cantero D (2001) Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem 36:601–606. https://doi.org/10.1016/S0032-9592(00)00240-5

    Article  CAS  Google Scholar 

  46. Blandino A, Maćas M, Cantero D (2000) Glucose oxidase release from calcium alginate gel capsules. Enzyme Microbial Technol 27:319–324. https://doi.org/10.1016/S0141-0229(00)00204-0

    Article  CAS  Google Scholar 

  47. Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N (2020) Fabrication of alginate microspheres for drug delivery: a review. Int J Biol Macromol 153:1035–1046. https://doi.org/10.1016/j.ijbiomac.2019.10.233

    Article  CAS  PubMed  Google Scholar 

  48. Nagarwal RC, Srinatha A, Pandit JK (2009) In situ forming formulation: development, evaluation, and optimization using 33 factorial design. AAPS PharmSciTech 10:977–984. https://doi.org/10.1208/s12249-009-9285-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deshmukh RK, Naik JB (2015) The impact of preparation parameters on sustained release aceclofenac microspheres: a design of experiments. Adv Powder Technol 26:244–252. https://doi.org/10.1016/j.apt.2014.10.004

    Article  CAS  Google Scholar 

  50. Terzioǧlu P, Yücel S, Öztürk M (2017) Application of Box-Behnken design for modeling of lead adsorption onto unmodified and NaCl-modified zeolite NaA obtained from biosilica. Water Sci Technol 75:358–365. https://doi.org/10.2166/wst.2016.526

    Article  CAS  PubMed  Google Scholar 

  51. Gupta B, Poudel BK, Pathak S, Tak JW, Lee HH, Jeong JH, Choi HG, Yong CS, Kim JO (2016) Effects of formulation variables on the particle size and drug encapsulation of imatinib-loaded solid lipid nanoparticles. AAPS PharmSciTech 17:652–662. https://doi.org/10.1208/s12249-015-0384-z

    Article  CAS  PubMed  Google Scholar 

  52. Dahmoune F, Spigno G, Moussi K, Remini H, Cherbal A, Madani K (2014) Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind Crops Prod 61:31–40. https://doi.org/10.1016/j.indcrop.2014.06.035

    Article  CAS  Google Scholar 

  53. Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: box-Behnken experimental design. J Hazard Mater 171:551–562. https://doi.org/10.1016/j.jhazmat.2009.06.035

    Article  CAS  PubMed  Google Scholar 

  54. Honary S, Ebrahimi P, Hadianamrei R (2014) Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm Dev Technol 19:987–998. https://doi.org/10.3109/10837450.2013.846375

    Article  CAS  PubMed  Google Scholar 

  55. Ali A, Shahriar H, Ahmad RM, Esmaeil D, Houshang AH (2014) Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology. J Geochem Explor 147:151–158. https://doi.org/10.1016/j.gexplo.2014.10.005

    Article  CAS  Google Scholar 

  56. Heller J, Himmelstein KJ (1985) Poly (ortho ester) biodegradable polymer systems. Methods Enzymol 112:422–436

    Article  CAS  PubMed  Google Scholar 

  57. Zhao J, Li S, Zhao Y, Peng Z (2019) Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels. Polym Bull. https://doi.org/10.1007/s00289-019-02972-z

    Article  Google Scholar 

  58. Salisu A, Sanagi MM, Abu Naim A, Abd Karim KJ, Wan Ibrahim WA, Abdulganiyu U (2016) Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polym Bull 73:519–537. https://doi.org/10.1007/s00289-015-1504-3

    Article  CAS  Google Scholar 

  59. Li J, Lee IW, Shin GH, Chen X, Park HJ (2015) Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm 94:322–332. https://doi.org/10.1016/j.ejpb.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  60. López Córdoba A, Deladino L, Martino M (2013) Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohyd Polym 95:315–323. https://doi.org/10.1016/j.carbpol.2013.03.019

    Article  CAS  Google Scholar 

  61. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Eclet Quim 29:57–63. https://doi.org/10.1590/s0100-46702004000200009

    Article  CAS  Google Scholar 

  62. Ross C, Rangika W, Luz S, MaryAnn A (2006) Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl Environ Microbiol 72:2280–2282. https://doi.org/10.1128/AEM.72.3.2280-2282

    Article  Google Scholar 

  63. Lupo B, Maestro A, Gutiérrez JM, González C (2015) Characterization of alginate beads with encapsulated cocoa extract toprepare functional food: Comparison of two gelation mechanisms. Food Hydrocolloids 49:25–34. https://doi.org/10.1016/j.foodhyd.2015.02.023

    Article  CAS  Google Scholar 

  64. Paris MJ, Ramírez-Corona N, Palou E, López-Malo A (2020) Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2020.110024

    Article  Google Scholar 

  65. Jurić S, Đermić E, Topolovec-Pintarić S, Bedek M, Vinceković M (2019) Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. J Integr Agri 18:2534–2548. https://doi.org/10.1016/S2095-3119(19)62634-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to MESRSFC, CNRST-Morocco and UMP for financial support of Project PPR 15-17 and PARA1-2019. The authors are thankful to the Professor Abdelmonaem Talhaoui, Head of Department of Chemistry, University of Mohammed first Oujda, for managing department of analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamal Essifi or Abdesselam Tahani.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essifi, K., Lakrat, M., Berraaouan, D. et al. Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design. Polym. Bull. 78, 5789–5814 (2021). https://doi.org/10.1007/s00289-020-03397-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03397-9

Keywords

Navigation