Skip to main content

Advertisement

Log in

In vitro bioactivity and biological assays of porous membranes of the poly(lactic acid) containing calcium silicate fibers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new approach in dentistry is based on the development of resorbable polymeric membranes for guided bone regeneration. The porous membrane surface promotes better cell adhesion and proliferation. Poly(lactic acid) (PLA) is one of most widely used polymers for several biological applications, with the advantage of presenting hydrolysis degradation and bioresorption of its products. In this work, PLA porous polymeric membranes containing calcium silicate (CaSiO3) fibers were prepared by controlled humidity technique. The porous membranes were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, bioactivity in simulated body fluid and biological studies in vitro. The incorporation of the CaSiO3 fibers into the polymeric matrix increased the pore size (1.5–34.9 µm). In the bioactivity assay, PLA/CASiO3 membranes induced the formation of a hydroxyapatite layer on the porous membrane surface. Also, in vitro biologic assays showed that the porous membranes provided suitable environment for cell attachment and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers 8:1–10

    Google Scholar 

  2. Lee SW, Kim SG (2014) Membranes for the Guided Bone Regeneration. Maxillofac Plast Reconstr Surg 36:239–246

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shue L, Yufeng Z, Mony U (2012) Biomaterials for periodontal regeneration: a review of ceramics and polymers. Biomatter 2:271–277

    PubMed  PubMed Central  Google Scholar 

  4. Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6:1187–1197

    CAS  PubMed  Google Scholar 

  5. Kim TH, Oh SH, Na SY, Chun SY, Lee JH (2012) Effect of biological/physical stimulation on guided bone regeneration through asymmetrically porous membrane. J Biomed Mater Res A 100:1512–1520

    PubMed  Google Scholar 

  6. Oh SH, Kim TH, Chun SY, Park EK, Lee JH (2012) Enhanced guided bone regeneration by asymmetrically porous PCL/pluronic F127 membrane and ultrasound stimulation. J Biomater Sci Polym Ed 23:1673–1686

    CAS  PubMed  Google Scholar 

  7. Rowe MJ, Kamocki K, Pankajakshan D, Li D, Bruzzaniti A, Thomas V, Blanchard SB, Bottino MC (2016) Dimensionally stable and bioactive membrane for guided bone regeneration: an in vitro study. J Biomed Mater Res B Appl Biomater 104(3):594–605

    CAS  PubMed  Google Scholar 

  8. da Silva TN, Gonçalves RP, Rocha CL, Archanjo BS, Barboza CAG, Pierre MBR, Reynaud F, de Souza Picciani PH (2019) Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration. Mater Sci Eng C Mater Biol Appl 97:602–612

    PubMed  Google Scholar 

  9. Wang D, Lin Y, Chen L, Mo Y, Huang P, Ma R (2017) Guided bone regeneration using a bone tissue engineering complex consisting of a poly-dl-lactide membrane and bone mesenchymal stem cells. Oncotarget 9(23):16380–16388

    PubMed  PubMed Central  Google Scholar 

  10. Aldemir Dikici B, Dikici S, Reilly GC, MacNeil S, Claeyssens F (2019) A novel bilayer polycaprolactone membrane for guided bone regeneration: combining electrospinning and emulsion templating. Mater Basel 12(16):2643

    Google Scholar 

  11. Zhang HY, Jiang HB, Ryu JH, Kang H, Kim KM, Kwon JS (2019) Comparing properties of variable pore-sized 3D-printed PLA membrane with conventional PLA membrane for guided bone/tissue regeneration. Mater Basel 12(10):1718

    CAS  Google Scholar 

  12. Castillo-Dalí G, Velázquez-Cayón R, Serrera-Figallo MA, Rodríguez-González- Elipe A, Gutierrez-Pérez J-L, Torres-Lagares D (2015) Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. J Oral Implantol 41:e152–e157

    PubMed  Google Scholar 

  13. Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diagn Res 9:21–25

    Google Scholar 

  14. Murariu M, Dubois P (2016) PLA composites: From production to properties. Adv Drug Deliv Rev 107:17–46

    CAS  PubMed  Google Scholar 

  15. Bouler JM, Pilet P, Gauthier O, Verron E (2017) Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater S1742–7061:30086–30087

    Google Scholar 

  16. Baino F, Fiorilli S, Vitale-Brovarone C (2016) Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater 42:18–32

    CAS  PubMed  Google Scholar 

  17. Wu C, Zhang Y, Fan W, Ke X, Hu X, Zhou Y, Xiao Y (2011) CaSiO3 microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres. J Biomed Mater Res A 98:122–131

    PubMed  Google Scholar 

  18. Sailaja GS, Ramesh P, Vellappally S, Anil S, Varma HK (2016) Biomimetic approaches with smart interfaces for bone regeneration. J Biomed Sci 23:77

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dorozhkin SV (2011) Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 1:3–56

    PubMed  PubMed Central  Google Scholar 

  20. Griffin MF, Kalaskar DM, Seifalian A, Butler PE (2016) An update on the application of nanotechnology in bone tissue engineering. Open Orthop J 10:836–848

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu W, Dan X, Wang T, Lu WW, Pan H (2016) A Bone-implant interaction mouse model for evaluating molecular mechanism of biomaterials/bone interaction. Tissue Eng Part C Methods 22:1018–1027

    CAS  PubMed  Google Scholar 

  22. Wang G, Moya S, Lu Z, Gregurec D, Zreiqat H (2015) Enhancing orthopedic implant bioactivity: refining the nanotopography. Nanomed Lond 10:1327–1341

    CAS  Google Scholar 

  23. Liu Y, Bao C, Wismeijer D, Wu G (2015) The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C Mater Biol Appl 49:323–329

    CAS  PubMed  Google Scholar 

  24. Zhao H, Li Q, Wang Q, Wang Z (2013) Research progress in surface modification of orthopaedic implants via extracellular matrix components. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 27:1390–1394

    CAS  PubMed  Google Scholar 

  25. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, Othman R (2015) Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Biomed Mater 10:045011

    CAS  PubMed  Google Scholar 

  26. Siqueira IAWB, Corat MAF, Cavalcanti BN, Neto WAR, Martin AA, Bretas RES, Marciano FR, Lobo AO (2015) In Vitro and in Vivo Studies of Novel Poly(D, L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration. ACS Appl Mater Interfaces 7(18):9385–9398

    CAS  PubMed  Google Scholar 

  27. Yazdimamaghani M, Razavi M, Vashaee D, Tayebi L (2015) Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Mater Sci Eng C Mater Biol Appl 49:436–444

    CAS  PubMed  Google Scholar 

  28. Moonesi Rad R, Atila D, Evis Z, Keskin D, Tezcaner A (2019) Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration. J Tissue Eng Regen Med 13(8):1331–1345

    CAS  PubMed  Google Scholar 

  29. Son JS, Kim SG, Jin SC, Piao ZG, Lee SY, Oh JS, Kim CS, Kim BH, Jeong MA (2012) Development and structure of a novel barrier membrane composed of drug-loaded poly(lactic-co-glycolic acid) particles for guided bone regeneration. Biotechnol Lett 34:779–787

    CAS  PubMed  Google Scholar 

  30. Silva L, Bertran C, Gonçalves M (2015) Water vapor-induced formation of poly(ε-caprolactone) membranes for guided bone regeneration. J Mater Sci 50:4122–4131

    Google Scholar 

  31. Pitois O, François B (1999) Crystallization of condensation droplets on a liquid surface. Colloid Polym Sci 277:574–578

    CAS  Google Scholar 

  32. Sunami H, Ito E, Tanaka M, Yamamotoa S, Shimomura M (2005) Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. Colloids Surf A Physicochem Eng Asp 284–285:548–551

    Google Scholar 

  33. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    CAS  PubMed  Google Scholar 

  34. Li X, Shi J, Zhu Y, Shen W, Li H, Liang J, Gao J (2007) A template route to the preparation of mesoporous amorphous calcium silicate with high in vitro bone-forming bioactivity. J Biomed Mater Res B Appl Biomater 83(2):431–439

    PubMed  Google Scholar 

  35. Ye L, Chang J, Ning C, Lin K (2008) Fabrication of poly-(DL-lactic acid)-wollastonite composite films with surface modified {beta}-CaSiO3 particles. J Biomater Appl 22(5):465–480

    CAS  Google Scholar 

  36. Wei J, Chen F, Shin JW, Hong H, Dai C, Su J, Liu C (2009) Preparation and characterization of bioactive mesoporous wollastonite—Polycaprolactone composite scaffold. Biomaterials 30(6):1080–1088

    CAS  PubMed  Google Scholar 

  37. Hayashi S, Sugai M, Nakagawa Z-e, Takei T, Kawasaki K, Katsuyama T et al (2000) Preparation of CaSiO3 whiskers from alkali halide fuxes. J Eur Ceram Soc 20(8):1099–1103

    CAS  Google Scholar 

  38. Motisuke M, Bertran CA (2012) Síntese de “whiskers” de CaSiO3 em fluxo salino para elaboração de biomateriais. Cerâmica 58:504–508

    CAS  Google Scholar 

  39. Neto WAR, Pereira IHL, Ayres E, Paula ACC, Averous AMG, Oréfice RL et al (2012) Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterisation and cell viability. Polym Degrad Stab 97:2037–2051

    Google Scholar 

  40. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Nucleation of biomimetic Ca-P Coatings on Ti6Al4V from a SBFX5 solution: influence of magnesium. Biomaterials 23:2211–2220

    CAS  PubMed  Google Scholar 

  41. Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Influence of Ionic strength and carbonate on the Ca-P coating formation from SBF × 5 solution. Biomaterials 23:1921–1930

    CAS  PubMed  Google Scholar 

  42. Hartree EF (1972) Determination of protein—Modification of Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    CAS  PubMed  Google Scholar 

  43. Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO (2016) Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-coterephthalate) fibers. Mater Sci Eng C 59(1):782–791

    CAS  Google Scholar 

  44. de Andrade DP, de Vasconcellos LM, Carvalho IC, Forte LF, de Souza Santos EL, Prado RF, Santos DR, Cairo CA, Carvalho YR (2015) Titanium-35niobium alloy as a potential material for biomedical implants: in vitro study. Mater Sci Eng C Mater Biol Appl 1(56):538–544

    Google Scholar 

  45. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84

    CAS  PubMed  Google Scholar 

  46. Pitois O, François B (1999) Formation of ordered micro-porous membranes. Eur Phys J B Condens Matter 8(2):225–231

    CAS  Google Scholar 

  47. Karthaus O, Maruyama N, Cieren X, Shimomura M, Hasegawa H, Hashimoto T (2000) Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16(15):6071–6076

    CAS  Google Scholar 

  48. Nishikawa T, Ookura R, Nishida J, Arai K, Hayashi J, Kurono N, Sawadaishi T, Hara M, Shimomura M (2002) Fabrication of honeycomb film of an amphiphilic copolymer at the air–water interface. Langmuir 18:5734–5740

    CAS  Google Scholar 

  49. Xu WZ, Kadla JF (2013) Honeycomb films of cellulose azide: molecular structure and formation of porous films. Langmuir 29:727–733

    PubMed  Google Scholar 

  50. Siqueira IAWB, Moura NK, Machado JPB, Backes EH, Passador FR, Trichês ES (2017) Porous membranes of the polycaprolactone (PCL) containing calcium silicate fibers for guided bone regeneration. Mater Lett 206(1):210–213

    CAS  Google Scholar 

  51. Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46:6001–6008

    CAS  Google Scholar 

  52. Siqueira L, Passador FR, Costa MM, Lobo AO, Sousa E (2015) Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly(lactic acid) fibers obtained by electrospinning. Mater Sci Eng C Mater Biol Appl 52:135–143

    CAS  PubMed  Google Scholar 

  53. Wang Z, Wang Y, Zhang P, Chen X (2016) A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Sci Rep 6:20770

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Ver 108:4754–4783

    CAS  Google Scholar 

  55. Guastaldi AC, Aparecida AH (2010) Fosfatos de cálcio de interesse biológico: importância como biomateriais, propriedades e métodos de obtenção de recobrimento. Quim Nova 33(6):1352–1358

    CAS  Google Scholar 

  56. Okada K, Hasegawa F, Kameshima Y, Nakajima A (2007) Bioactivity of CaSiO3/poly-lactic acid (PLA) composites prepared by various surface loading methods of CaSiO3 powder. J Mater Sci Mater Med 18:1605–1612

    CAS  PubMed  Google Scholar 

  57. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Engi 11:1–18

    CAS  Google Scholar 

  58. Mahjoubi H, Kinsella JM, Murshed M, Cerruti M (2014) Surface modification of poly (D,L-lactid acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry. ACS Appl Mater Interfaces 6:9975–9987

    CAS  PubMed  Google Scholar 

  59. Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, Daculsi G (2005) In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials 26(2):157–165

    CAS  PubMed  Google Scholar 

  60. Wei J, Chen F, Shin J-W, Hong H, Dai C, Su J, Liu C (2009) Preparation and characterization of bioactive mesoporous wollastonite—Polycaprolactone composite scaffold. Biomaterials 30:1080–1088

    CAS  PubMed  Google Scholar 

  61. Wei J, Wu X, Liu C, Jia J, Heo S-j, Kim S-e, Hyun Y-t, Shinw J-W (2009) Fabrication of bioactive scaffold of poly(ε-caprolactone) and nanofiber wollastonite composite. J Am Ceram Soc 92:1017–1023

    CAS  Google Scholar 

  62. Harley BA, Kim HD, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ (2008) Microarchitecture of threedimensional scaffolds influences cell migration behavior via junction interactions. Biophys J 95(8):4013–4024

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5(3):28–41

    PubMed  PubMed Central  Google Scholar 

  64. de Queiroz TS, Prado RF, Amaral SS, Siqueira IAWB, Trichês ES, de Oliveira LD, Vasconcellos LMR, Camargo SEA (2019) Cytotoxicity and genotoxicity of PLA and PCL membranes on osteoblasts. Acta Sci Dental Sci 3(4):55–59

    Google Scholar 

  65. Zhang W, Ma D, Zhao Q, Ishida T (2010) The effect of the major components of Fructus Cnidii on osteoblasts in vitro. J Acupunct Meridian Stud 3(1):32–37

    PubMed  Google Scholar 

  66. Kim SH, Shin K, Moon S, Jang J, Kim HS, Shu JS, Yang W (2017) Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med 6(6):1311–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haider A, Gupta KC, Kang IK (2014) Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. Biomed Res Int 2014:308306

    PubMed  PubMed Central  Google Scholar 

  68. Simão AM, Beloti MM, Rosa AL, Oliveira PT, Granjeiro JM, Pizauro JM, Ciancaglini P (2007) Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase. Cell Bio Int 31(11):1405–1413

    Google Scholar 

  69. Sugawara Y, Suzuki K, Koshikawa M, Ando M, Iida J (2002) Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells. Jpn J Pharmacol 88(3):262–269

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the São Paulo Research Foundation—FAPESP (2015/24659-7)—for financial support and the student Cynthia Guimarães de Paula for the production of the calcium silicate fibers (FAPESP 2012/07897-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idalia Aparecida Waltrick Brito Siqueira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, I.A.W.B., Amaral, S.S., de Moura, N.K. et al. In vitro bioactivity and biological assays of porous membranes of the poly(lactic acid) containing calcium silicate fibers. Polym. Bull. 77, 5357–5371 (2020). https://doi.org/10.1007/s00289-019-03021-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03021-5

Keywords

Navigation