Skip to main content
Log in

Study of the synthesis and properties of polyurethane containing pyridyl units for shape memory

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, 4,4′-diphenylmethane diisocyanate and polytetramethylene glycol were used to prepare a prepolymer, and 2,6-pyridinedimethanol (2,6-PDM) was then used as a chain extender to prepare a novel polyurethane (PDM/PUs). Gel permeation chromatography analysis shows that the molecular weight of PDM/PUs increases as the 2,6-PDM content increases. Fourier transform infrared spectroscopy analyses demonstrate that by increasing the 2,6-PDM content, PDM/PUs will form strong hydrogen bonds. The thermal analysis of PDM/PUs indicates that the initial decomposition temperature of PDM/PUs-03 is approximately 10 °C higher than that of PDM/PUs-01. Differential Scanning Calorimetry and Dynamic Mechanical Analysis analyses indicate that increases in the 2,6-PDM content produce significant enhancements in the glass transition temperature (T g) and the dynamic T g of PDM/PUs. Stress–strain tests indicate that 2,6-PDM can increase the maximum stress and Young’s modulus of PDM/PUs while reducing the elongation rate at break. The results of moisture absorption rate test indicate that when the 2,6-PDM content and ambient humidity increase, the water absorption rate of PDM/PUs increases. Moreover, PDM/PUs exhibits good shape recovery (>90 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Comstock MJ (1981) Urethane Chemistry and Applications. ACS Chapter 1

  2. Datta J (2010) Synthesis and investigation of glycolysates and obtained polyurethane elastomers. J Elastom Plast 42:117–127

    Article  CAS  Google Scholar 

  3. Datta J, Laski M, Kucinska-Lipka J (2007) The properties of polyurethane elastomers to he used as polymer cores in sandwich plate systems (SPS). Przemysł Chemiczny 86:63–67

    CAS  Google Scholar 

  4. Datta J, Rohn M (2008) Structure, thermal stability and mechanical properties of polyurethanes, based on glycolysate from polyurethane foam waste, prepared with use of 1,6-hexanediol as a glycol. Polimery 53:871–875

    CAS  Google Scholar 

  5. Datta J, Rohn M (2007) Glycolysis of polyurethane wastes. Part II. Purification and use of glycolysis products. Polimery 52:627–633

    CAS  Google Scholar 

  6. Datta J, Pasternak S (2005) Oligourethane glycols obtained in glycolysis of polyurethane foam as semi-finished products for cast urethane elastomers preparation. Polimery 50:352–357

    CAS  Google Scholar 

  7. Cho JW, So JH (2006) Polyurethane-silver fibers prepared by infiltrationand reduction of silver nitrate. Mater Lett 60:2653–2656

    Article  CAS  Google Scholar 

  8. Schollenberger CS (1990) Polyurethane and isocyanate based adhesives. Handbook of adhesives New York: Van Nostrand Reinhold Chapter 20

  9. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437

    Article  CAS  Google Scholar 

  10. Plominskamichalak B, Lisowska R, Balas A (1994) Properties of poly(ester-ether) microcellular urethane elastomer systeme. J Elastom Plast 26:327–334

    Article  Google Scholar 

  11. Galan RJ, Narayan T, Markovs RA (1990) Novel Polyurethane Shoe Sole Systems Having Superior Low Temperature Flex Properties. J Elastom Plast 22:22–31

    Article  Google Scholar 

  12. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  13. Chen SJ, Hu JL, Chen SG, Zhang CL (2011) Study on the structure and morphology of supramolecular shape memory polyurethane containing pyridine moieties. Smart Mater Struct 20:065003–065009

    Article  Google Scholar 

  14. Connell EMO, Yang CZ, Root TW, Cooper SL (1996) Spectroscopic studies of pyridine-containing polyurethanes blended with metal acetates. Macromolecules 29:6002–6010

    Article  Google Scholar 

  15. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269

    Article  CAS  Google Scholar 

  16. Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3:58–67

    Article  CAS  Google Scholar 

  17. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20:3367–3381

    Article  CAS  Google Scholar 

  18. Hu JL, Chen SJ (2010) A review of actively moving polymers in textile applications. J Mater Chem 20:3346–3355

    Article  CAS  Google Scholar 

  19. Chen S, Hu J, Zhuo H, Yuen C, Chan L (2010) Study on the thermal-induced shape memory effect of pyridine containing supra- molecular polyurethane. Polymer 51:240–248

    Article  CAS  Google Scholar 

  20. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  CAS  Google Scholar 

  21. Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  22. Yuan Z, Ji B, Wu LB (2009) Synthesis and thermal induced shape memory properties of biodegradable segmented poly(ester-urethane)s. Acta Polym Sin 41:153–158

    Article  Google Scholar 

  23. Hollander SD, Assche GV, Mele BV, Prez FD (2009) Studies of the moisture-sensitive shape memory effect of pyridine-containing polyurethanes. Polymer 50:4447–4454

    Article  Google Scholar 

  24. Chen S, Hu J, Yuen CW, Chan L (2009) Supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Mater Lett 63:1462–1464

    Article  CAS  Google Scholar 

  25. Zhu Y, Hu JL, Liu YJ (2009) Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments. Eur Phys J E 28:3–10

    Article  CAS  Google Scholar 

  26. Vogt BD, Soles CL, Lee HJ, Lin EK, Wu W (2005) Moisture absorption into ultrathin hydrophilic polymer films on different substrate surfaces. Polymer 46:1635–1642

    Article  CAS  Google Scholar 

  27. Chen S, Hu J, Chen S (2012) Studies of the moisture-sensitive shape memory effect of pyridine-containing polyurethanes. Polym Int 61:314–320

    Article  CAS  Google Scholar 

  28. Brunette CM, Hsu SL, Macknight WJ (1982) Hydrogen-bonding properties of hard-segment model compounds in polyurethane block copolymers. Macromolecules 15:71–77

    Article  CAS  Google Scholar 

  29. Arun Prasath R, Nanjundan S, Pakula T, Klapper M (2004) Thermal and dynamic mechanical behaviour of calcium containing co-polyurethanes. Polym Degrad Stab 85:911–923

    Article  Google Scholar 

  30. Rueda-Larraz L, Fernandez d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructureemechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment. Eur Polym J 45:2096–2109

    Article  CAS  Google Scholar 

  31. Papai I, Jancso G (2000) Hydrogen bonding in methyl-substituted pyridine-water complexes. J Phys Chem A 104:2132–2137

    Article  CAS  Google Scholar 

  32. Chen Shaojun Hu, Jinlian Yuen Chun-wah, Laikuen Chan (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50:4424–4428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maw-Cherng Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, SH., Wu, CL., Tsou, CY. et al. Study of the synthesis and properties of polyurethane containing pyridyl units for shape memory. Polym. Bull. 73, 1303–1320 (2016). https://doi.org/10.1007/s00289-015-1548-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1548-4

Keywords

Navigation