Skip to main content
Log in

A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A brief review has been presented on the existing methods to enhance the durability of lignocellulosic fibers (LCFs) for manufacturing composites for engineering applications. The free hydroxyl groups of the cellulose chains within LCFs tend to attract water molecules in moist environment, which may cause the fibers to swell and the cellulose chains to lose their integrity due to hydrolysis and oxidation imparted by the actions of biogenic enzymes or chemical factors, such as acidity, alkalinity, and salinity or UV irradiation. This study mainly highlights those technologies that present the modifications of cellulose main chain within the LCFs to improve the degradation resistance and mechanical strength. Detailed pros and cons of those chemical modifications have also been presented in this study with possible applications of the composites with special reference to durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12

Similar content being viewed by others

References

  1. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  2. Thakur VK, Thakur MK, Gupta RK (2014) Review: Raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271

    Article  CAS  Google Scholar 

  3. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  4. Thakur VK, Thakur MK, Raghvan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  CAS  Google Scholar 

  5. Thakur VK, Thakur MK, Gupta RK (2013) Synthesiss of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    Article  CAS  Google Scholar 

  6. Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure-morphology-rheology relationship. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  7. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and Applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  8. Saha P, Manna S, Chowdhury RS, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Biores Technol 101:3182–3187

    Article  CAS  Google Scholar 

  9. Gassan J, Bledzki AK (1995) 7th Internationales techtexil symposium 1995. Frankfurt, 20–22 June 1995

  10. Solomon TWG (1988) Organic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  11. Rowell RM, Stout HP (2007) Jute and Kenaf fibers, Chapter 7. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton

  12. Rowell RM (1996) Chemical modification of nonwood lignocellulosics, chapter 9. In: Hon DNS (ed) Chemical modification of lignocellulosic materials. Marcel Dekker, New York

  13. Winandy JE, Rowell RM (2005) Chemistry of wood strength. In: Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

  14. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18:351–363

    Article  CAS  Google Scholar 

  15. Sjorstrom E (1981) Wood chemistry: fundamentals and applications. Academic Press, London, p 169

    Google Scholar 

  16. Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composit Sci Technol 63:861–869

    Article  CAS  Google Scholar 

  17. Hill ASC, Abdul Khalil HPS, Hale MD (1998) A study of the potential acetylation to improve the properties of plant fibers. Ind Crop Prod 8:53–63

    Article  CAS  Google Scholar 

  18. Abdul Khalil HPS, Ismail H (2001) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20:65–75

    Article  CAS  Google Scholar 

  19. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409

    Article  CAS  Google Scholar 

  20. Joseph K, Mattoso LHC, Toledo S, Thomas S, de Carvalho LH, Pthen L, Kala S, James B (2000) Frollini E, Leão AL, Mattoso LHC, Sãn Carlos (eds) Natural polymers and agrofibers composites. Embrapa, USP-IQSC, UNESP, Brazil

  21. Kushwaha PK, Kumar R (2011) Influence of chemical treatment on the mechanical and water absorption properties of bamboo fiber composites. J Reinf Plast Composit 30:73–85

    Article  CAS  Google Scholar 

  22. Pandey K, Chandrasekhar N (2006) Photostability of wood surfaces esterified by benzoyl chloride. J Appl Polym Sci 99:2367–2374

    Article  CAS  Google Scholar 

  23. Evans PD, Owen NL, Schmid S, Webster RD (2002) Weathering and photostability of benzoylated wood. Polym Degrad Stab 76:291–303

    Article  CAS  Google Scholar 

  24. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrate. Biomacromolecules 8:1347–1352

    Article  CAS  Google Scholar 

  25. Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24:694–698

    Article  CAS  Google Scholar 

  26. Kalaprasad G, Francis B, Thomas S, Radhesh Kumar C, Pavitharan C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53:1624–1638

    Article  CAS  Google Scholar 

  27. Corrales F, Vilaseca F, Llop M, Girones J, Mendez JA, Mutje P (2007) Chemical modification of jute fibers for the production of green composites. J Hazard Mater 144:730–7354

    Article  CAS  Google Scholar 

  28. Pasquini D, Belgacem MN, Gandini A, Curvelo da Silva AA (2006) Surface erterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J Colloid Interf Sci 295:79–83

    Article  CAS  Google Scholar 

  29. Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102

    Article  CAS  Google Scholar 

  30. Samal RK, Acharya S, Mohanty M, Ray MC (2001) FTIR spectra and physico-chemical behavior of vinyl ester participated and transesterification and curing of jute. J Appl Polym Sci 79:575–581

    Article  CAS  Google Scholar 

  31. Samal RK, Rout SK, Panda BB, Senapati BK (1997) Vunyl-ester-participated transesterification and curing on the physicochemical behavior of coir-IV. J Appl Polym Sci 64:2283–2291

    Article  CAS  Google Scholar 

  32. Dankovich TA, Hsieh YL (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14:469–480

    Article  CAS  Google Scholar 

  33. Rowell RM, Chen GC (1994) Epichlorohydrin coupling reactions with wood: part 1. Reactions with biologically active alcohol. Wood Sci Technol 28:371–376

    Article  CAS  Google Scholar 

  34. Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2002) All plant fiber composites. I: unidirectional sisal fiber reinforced benzylated wood. Polym Compos 23:624–633

    Article  CAS  Google Scholar 

  35. Kalia S, Kaith BS, Kaur I (2009) Pretreatment of natural fibers and their application as reinforcing materials in polymer composites—a review. Polym Eng Sci 49:1253–1272

    Article  CAS  Google Scholar 

  36. Bairdo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45

    Article  Google Scholar 

  37. Agarwal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS (2000) Activation energya and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82

    Article  Google Scholar 

  38. Thakur MK, Gupta RK, Thakur VK (2014) Surface modification of cellulose using silane coupling agent. Carbohydr Polym 111:849–855

    Article  CAS  Google Scholar 

  39. Valadez-Gonzalvez A, Cervantez-Uc JM, Olayo R, Herrera-Franco PJ (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Composit B Eng 30:321–331

    Article  Google Scholar 

  40. Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Oil palm reinforced phenol formaldehyde composite influence of fiber surface modifications on the mechanical performance. Appl Composit Mater 7:295–329

    Article  CAS  Google Scholar 

  41. Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    Article  CAS  Google Scholar 

  42. Thakur VK, Singha AS, Thakur MK (2014) Pressure induced synthesis of EA grafted Saccaharum cilliare fibers. Int J Polym Mater Biomater 63:17–22

    Article  CAS  Google Scholar 

  43. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  44. Thakur VK, Singha AS, Thakur MK (2013) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748

    Article  CAS  Google Scholar 

  45. Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  Google Scholar 

  46. Thakur VK, Thakur MK, Gupta RK (2014) Graft copolymers of natural fibers from green composites. Carbohydr Polym 104:87–93

    Article  CAS  Google Scholar 

  47. Sahoo PK, Sahu GC, Rana PK, Das AK (2005) Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv Polym Technol 24:208–214

    Article  CAS  Google Scholar 

  48. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503

    Article  CAS  Google Scholar 

  49. Podgorski L, Bousta G, Schambourg F, Maguin J, Chevet B (2001) Surface modification of wood by plasma polymerization. Pigment Resin Technol 31:33–40

    Article  Google Scholar 

  50. Navarro F, Davalos F, Denes F, Cruz LE, Young RA, Ramos J (2003) Highly hydrophobic sisal chemithermomechanical pulp (CTMO) paper by fluorotrimethylsilane plasma treatment. Cellulose 10:411–424

    Article  CAS  Google Scholar 

  51. Hassan MM, Islam MR, Khan MA (2002) Effect of additives on the improvement of mechanical and degradable properties of photografted jute yarn with acrylamide. J Polym Environ 10:139–145

    Article  CAS  Google Scholar 

  52. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composit A Appl Sci Manuf 34:253–266

    Article  CAS  Google Scholar 

  53. Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as coupling agent on the performance of sisal-PP composites. J Reinf Plast Composit 23:2047–2063

    Article  CAS  Google Scholar 

  54. Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute-PP composites. J Reinf Plast Composit 23:625–637

    Article  CAS  Google Scholar 

  55. Mishra S, Naik JB, Ptil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Composit Sci Technol 60:1729–1735

    Article  CAS  Google Scholar 

  56. Kumar AP, Singh RP, Sarwade BD (2005) Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Mater Chem Phys 92:458–469

    Article  CAS  Google Scholar 

  57. Vasoya PJ, Patel VA, Parsania PH (2008) Preparation, mechanical and electrical properties and water absorption study of novel bisphenol–c-formaldehyde–acrylate treated and untreated jute composites. Polym Plast Technol Eng 47:53–57

    Article  CAS  Google Scholar 

  58. Paul S, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Composit Sci Technol 57:67–79

    Article  CAS  Google Scholar 

  59. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149

    Article  CAS  Google Scholar 

  60. Frederick TW, Norman W (2004) Natural fibers plastics and composites. Kluwer, NY

    Google Scholar 

  61. George J, Ivens J, Varpoest I (1999) Mechanical properties of flax fibre reinforced epoxy composites. Macromol Mater Eng 272:41–45

    CAS  Google Scholar 

  62. Zedorecki P, Flodin P (1985) Surface modification of cellulose fiber. II. The effect of cellulose fibre treatment on the performance of cellulose polyester composites. J Appl Polym Sci 30:3971–3983

    Article  Google Scholar 

  63. Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290

    Article  CAS  Google Scholar 

  64. Felby C, Hassingboe J, Lund M (2002) Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin. Enzyme Micron Technol 31:736–741

    Article  CAS  Google Scholar 

  65. Xie J, Hsieh YL (2001) Enzyme-catalyzed transesterification of vinyl esters on cellulose solids. J Polym Sci A Polym Chem 39:1931–1939

    Article  CAS  Google Scholar 

  66. Zhang Y, Fan X (2010) Surface modification of cotton fabrics by transesterificaation with ion-paired subtilisin Carlsberg in solvents. Cellulose 17:903–911

    Article  CAS  Google Scholar 

  67. Vigneswaran C, Jayapriya J (2010) Effect on physical characteristics of jute fibers with cellulase and specific mixed enzyme system. J Text Inst 101:506–513

    Article  CAS  Google Scholar 

  68. Bledzki AK, Mmun AA, Jaszkiewicz A, Erdmann K (2010) Polypropylene composites with enzyme modified abaca fibre. Composit Sci Technol 70:854–860

    Article  CAS  Google Scholar 

  69. Janardhnan SK, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity innatural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6:1242–1250

    CAS  Google Scholar 

  70. Manna S, Saha P, Roy D, Sen RK, Adhikari B, Das S (2012) Enhanced biodegradation resistance of biomodified jute fibers. Carbohydr Polym 93:597–603

    Article  CAS  Google Scholar 

  71. Halls NA (1991) Gamma-irradiation processing. In: Clegg DW, Collyer AA (eds) Irradiation effects on polymers. Elsevier, New York

  72. Clough RL (2001) High-energy radiation and polymers: a review of commercial processes and engineering applications. Nucl Instr Methods Phys Res B 185:8–33

    Article  CAS  Google Scholar 

  73. Solpan D, Guven O (1999) Preservation of beech and spruce wood by allyl alcohol-based copolymers. Radiat Phys Chem 54:583–591

    Article  CAS  Google Scholar 

  74. Sreekala MS, Thomas S (2003) Effect of surface modification on water-sorption characteristics of oil palm fibers. Composit Sci Technol 63:861–869

    Article  CAS  Google Scholar 

  75. Garnett JL, Ng LT (1996) Additive effects common to radiation grafting and wood plastic composite formation. Radiat Phys Chem 48:217–230

    Article  CAS  Google Scholar 

  76. Ng LT, Garnett JL, Mohajerani S (1999) Role of additives in wood–polymer composites. Relationship to analogous radiation grafting and curing processes. Radiat Phys Chem 55:633–637

    Article  CAS  Google Scholar 

  77. Khan M, Ali K (1993) Synergistic effect of additives including multifunctional acrylates in wood plastic composites. Radiat Phys Chem 42:167–170

    Article  CAS  Google Scholar 

  78. Han YH, Han SO, Chao D, Kim HI (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Composit Interf 14:559–578

    Article  CAS  Google Scholar 

  79. Gibeop N, Lee DW, Prasad CV, Toru F, Kim BS, Song JI (2013) Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites. Adv Composit Mater 22:389–399

    Article  CAS  Google Scholar 

  80. Mitra BC, Basak RK, Sarkar M (1998) Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifications of fibers. J Appl Polym Sci 67:1093–1100

    Article  CAS  Google Scholar 

  81. Furuno T, Imamura Y, Kjita H (2004) The modification of wood by treatment with low molecular weight phenol formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361

    Article  CAS  Google Scholar 

  82. Hussein AS, Ibrahim KI, Abdulla KM (2011) Tannin–phenol formaldehyde resins as binders for cellulosic fibers: mechanical properties. Nat Res 2:98–101

    CAS  Google Scholar 

  83. Bisanda ETN, Ansell MP (1992) Properties of sisal CNSL composites. J Mater Sci 27:1690–1700

    Article  CAS  Google Scholar 

  84. Wang S, Wasylciw W, Guoliang QU (2007) Using oil based additives to improve lignocellulosic fibre bonding and dimensional performance. US Patent No. 2007210473, September 13, 2007

  85. Sarkar S, Adhikari B (2001) Jute felt composite from lignin modified phenolic resin. Polym Composit 22:518–527

    Article  CAS  Google Scholar 

  86. Yap MGS, Chia LHL, Teoh SH (1990) Wood-polymer composites from tropical hardwoods. I WPC properties. J Wood Chem Technol 10:1–19

    Article  CAS  Google Scholar 

  87. Lyon F, Pizzi A, Imamura Y, Thevenon MF, Kartal AN, Gril J (2007) Leachability and termite resistance of wood treated with new preservative: ammonium borate oleate. Rolz Roh Werkst 65:359–366

    Article  CAS  Google Scholar 

  88. Jacob M, Varughese KT, Thomas S (2006) Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. Biomacromolecules 6:2969–2979

    Article  CAS  Google Scholar 

  89. Joshi M, Wazed S, Rajendran S (2007) Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadiractha indica): a natural bioactive agent. J Appl Polym Sci 106:793–800

    Article  CAS  Google Scholar 

  90. Schmalzl KJ, Evans PD (2003) Wood surface protection with some titanium, zirconium and manganese compounds. Polym Degrad Stab 82:409–419

    Article  CAS  Google Scholar 

  91. Lesar B, Pavlič M, Petrič M, Škapin AS, Humar M (2011) Wax treatment of wood slows photodegradation. Polym Degrad Stab 96:1271–1278

    Article  CAS  Google Scholar 

  92. Saha P, Manna S, Sen RK, Roy D, Adhikari B (2012) Durability of lignocellulosic Fibers treated with vegetable oil-phenolic resin. Carbhydr Polym 87:1628–1636

  93. Lyon F, Thevenon MF, Hwang WJ, Imamura Y, Gril J, Pizzi A (2007) Effect of an oil heat treatment on the leachability and biological resistance of boric acid impregnated wood. Ann For Sci 64:673–678

    Article  CAS  Google Scholar 

  94. Saha P, Roy D, Manna S, Adhikari B, Sen RK, Roy S (2012) Durability of transesterified jute geotextiles. Geotex Geomembr 35:69–75

    Article  Google Scholar 

  95. Silva RV, Spinelli D, Bose Filho WW, Neto SC, Chierice GO, Tarpani JR (2006) Fracture toughness of natural fibers/castor oil polyurethane composites. Composit Sci Technol 66:1328–1335

    Article  CAS  Google Scholar 

  96. Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composit Part A Appl Sci Manuf 39:514–522

    Article  CAS  Google Scholar 

  97. Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80:1013–1020

    Article  CAS  Google Scholar 

  98. Edeerozey AM, Akil MH, Azhar AB, Ariffin MIZ (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025

    Article  CAS  Google Scholar 

  99. Munawar SS, Umemura K, Tanaka F, Kawai S (2008) Effects of alkali, mild steam, and chitosan treatment on the properties of pineapple, eamie, and sansevieria fiber bundles. J Wood Sci 54:28–35

    Article  CAS  Google Scholar 

  100. Kessler RW, Becker U, Kohlar R, Goth B (1998) Steam explosion of flax—a superior technique for upgrading fibre value. Biomass Bioenerg 14:237–249

    Article  CAS  Google Scholar 

  101. Chakraborty S, Kundu SP, Roy A, Basak RK, BasuMajumder S, Adhikari B (2013) Improvement of the mechanical properties of jute fiber reinforced cement mortar: a statistical approach. Constr Build Mater 38:776–784

    Article  Google Scholar 

  102. Chakraborty S, Kundu SP, Roy A, BasuMajumder S, Adhikari B (2013) Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Constr Build Mater 49:214–222

    Article  Google Scholar 

  103. Kundu SP, Chakraborty S, Roy A, BasuMajumder S, Adhikari B (2012) Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Constr Build Mater 37:841–850

    Article  Google Scholar 

  104. Chakraborty S, Kundu SP, Roy A, BasuMajumder S, Adhikari B (2013) Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Ind Eng Chem Res 52:1252–1260

    Article  CAS  Google Scholar 

  105. Sridevi A, Behera AK, Sen RK, Adhikari B (2013) Physical and mechanical characterization of jute reinforced soy composites. J Reinf Plast Composit 32:1380–1390

    Article  CAS  Google Scholar 

  106. Behera AK, Sridevi A, Sen RK, Adhikari B (2013) Develoment and characterization of nanoclay-modified soy resin-based jute composite as an eco-friendly/green product. Polym Plast Technol Eng 52:1–9

    Article  CAS  Google Scholar 

  107. Gordon JE (1976) The New Science of Strong Materials. Penguin Books, London

    Google Scholar 

  108. McMullen P (1984) Fibre/resin composites for aircraft primary structures: a short history 1936–1984. Composites 15:222–230

    Article  CAS  Google Scholar 

  109. Azwa ZN, Yousif BF, Manalo AC, Karunasenaa W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  110. Hughes M (2000) Baillie C (ed) Green composites: polymer composites and the environment, Chapter 11. CRC Press, England

  111. Saha P, Manna S, Roy D, Kim MC, Chowdhury S, De S, Sen RK, Adhikari B, Kim JK (2014) Effect of photodegradation of lignocellulosic fibers transesterified with vegetable oil. Fibers Polym 15:2345–2354

    Article  CAS  Google Scholar 

  112. Saha P, Roy D, Manna S, Chowdhury S, Banik S, Sen RK, Jo J, Kim JK, Adhikari B (2015) Biodegradation of chemically modified lignocellulosic sisal fibers: study of the mechanism for enzymatic degradation of cellulose. e-polymers 15:185–194

    Article  CAS  Google Scholar 

  113. Rahman MA, Siddiqueullah M, Mian AJ (1996) Production of fine yarns from partially etherified jute fibre. J Text Inst Part 1(87):600–602

    Article  Google Scholar 

  114. Andersson M, Tillman AM (1989) Acetylation of jute: effects of strength, rot resistance, and hydrophobicity. J Appl Polym Sci 37:3437–3447

    Article  CAS  Google Scholar 

  115. Uddin MK, Khan MA, Idriss Ali KM (1996) Modification of jute yarn by graft-copolymerization with ultraviolet radiation. Radiat Phys Chem 48:511–517

    Article  Google Scholar 

  116. Sanyal T, Chakraborty K (1994) Application of bitumen-coated jute geotextiles in river bank-protection works in the Hooghly estuary. Geotext Geomembr 13:67–89

    Article  Google Scholar 

  117. Dutta U (2007) Application of Jute geotextiles. J Nat Fibers 4:67–82

    Article  CAS  Google Scholar 

  118. Sinha S, Chakraborty S (2004) A rot resistant durable natural fibre and/or geotextiles. Patent application number: PCT/IN2004000119

  119. Basu G, Roy AN, Bhattacharyya SK, Ghosh SK (2009) Construction of unpaved rural road using jute-synthetic blended woven geotextiles—a case study. Geotext Geomembr 27:506–512

    Article  Google Scholar 

  120. Alms B, Yonko PJ, McDowell RC, Advani SG (2009) Design and development of an I-Beam from natural composites. J Biobased Mater Bioenergy 3:181–187

    Article  CAS  Google Scholar 

  121. Dweib MA, Hu B, Shenton HW III, Wool RP (2006) Bio-based composite roof structure: manufacturing and processing issues. Composit Struct 74:379–388

    Article  Google Scholar 

  122. Yu HN, Kim SS, Hwang IU, Lee DG (2008) Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes. Composit Struct 86:285–290

    Article  Google Scholar 

  123. Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Design 32:1990–1999

    Article  CAS  Google Scholar 

  124. Belgacem MM, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composit Interf 12:41–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prosenjit Saha or Debasis Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Chowdhury, S., Roy, D. et al. A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym. Bull. 73, 587–620 (2016). https://doi.org/10.1007/s00289-015-1489-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1489-y

Keywords

Navigation