Skip to main content

Advertisement

Log in

Synthesis of poly(vinyl alcohol-graft-lactic acid) copolymer and its application as medical anti-tissue adhesion thin film

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Graft copolymers of poly(vinyl alcohol-g-lactic acid) (PVA-g-PLA) were synthesized through a direct polycondensation of d,l-lactic acid grafting from polyvinyl alcohol (PVA) using 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) as the catalyst. The molecular weights of the graft copolymers varied from 98,000 to 106,000, which were determined by gel permeation chromatography. It was observed that the glass transition temperatures of the copolymers decreased with the increase of lactic acid units in the copolymers. Thin films with the thickness of 0.04–0.06 mm were prepared using the copolymers. The films showed improved hydrophilicity and flexibility compared with PLA homopolymer. Small pieces of the films were implanted under the skin of mice for anti-tissue adhesion purpose. The films demonstrated good anti-tissue adhesion behavior and suitable degradability in the mouse body. The graft copolymers were non-toxic, flexible, blood compatible, non-cytotoxic and had potential applications as a medical anti-tissue adhesion agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mathers RT (2012) How well can renewable resources mimic commodity monomers and polymers? J Polym Sci A Polym Chem 50:1–15

    Article  CAS  Google Scholar 

  2. Wilbon P, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37

    Article  CAS  Google Scholar 

  3. Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    Article  CAS  Google Scholar 

  4. Tuominen J, Kylma J, Kapanen A, Venelampi O, Itavaara M, Seppala J (2002) Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact. Biomacromolecules 3:445–455

    Article  CAS  Google Scholar 

  5. Bishai M, De S, Adhikari B, Banerjee R (2014) A comprehensive study on enhanced characteristics of modified polylactic acid based versatile biopolymer. Eur Polym J 54:52–61

    Article  CAS  Google Scholar 

  6. Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554

    Article  CAS  Google Scholar 

  7. Sansone L, Aldi A, Musto P, Maio ED, Amendola E, Mensitieri G (2012) Assessing the suitability of polylactic acid flexible films for high pressure pasteurization and sterilization of packaged foodstuff. J Food Eng 111:34–45

    Article  CAS  Google Scholar 

  8. Rhim JW, Mohanty AK, Singh SP, Ng PKW (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 101:3736–3742

    Article  CAS  Google Scholar 

  9. Wang J, Yao K, Wang C, Tang C, Jiang X (2013) Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mater Chem B 1:2324–2332

    Article  CAS  Google Scholar 

  10. Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  11. Xiong Z, Yang Y, Feng JX, Zhang XM, Zhang CZ, Tang ZB (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydr Polym 92:810–816

    Article  CAS  Google Scholar 

  12. Choi KM, Choia MC, Hana DH, Parka TS, Hab CS (2013) Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur Polym J 49:2356–2364

    Article  CAS  Google Scholar 

  13. Ma P, Spoelstra AB, Schmit P, Lemstra PJ (2013) Toughening of poly (lactic acid) by poly (beta-hydroxybutyrate co-beta-hydroxyvalerate) with high hydroxyvalerate content. Eur Polym J 49:1523–1531

  14. Guerrouani N, Couturaud B, Mas A, SchuéF Robin JJ (2013) Environment-friendly synthesis of amphiphilic polyester-graft-poly(vinyl alcohol). Eur Polym J 49:1621–1633

    Article  CAS  Google Scholar 

  15. Ding N, Shentu BQ, Pan PJ, Shan GR, Bao YZ, Weng ZX (2013) Synthesis and crystallization of poly(vinyl acetate)-g-poly(l-lactide) graft copolymer with controllable graft density. Ind Eng Chem Res 52:12897–12905

    Article  CAS  Google Scholar 

  16. Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79

    Article  CAS  Google Scholar 

  17. Pitarresi G, Palumbo FS, Fiorica C, Calascibetta F, Stefano MD, Giammona G (2013) Injectable in situ forming microgels of hyaluronic acid-g-polylactic acid for methylprednisolone release. Eur Polym J 49:718–725

    Article  CAS  Google Scholar 

  18. Dasaria A, Quirós J, Herreroa B, Boltes K, García-Calvoc E, Rosal R (2012) Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J Membr Sci 405–406:134–140

    Article  Google Scholar 

  19. Jansen R (1990) Prevention and treatment of post surgical adhesions. Med J Aust 152:305–306

    CAS  Google Scholar 

  20. Kato T, Haro H, Komori H et al (2005) Evaluation of hyaluronic acid sheet for the prevention of post laminectomy adhesions. Spine J 5:479–488

    Article  Google Scholar 

  21. Fernández ICS, Mei HC, Lochhead MJ, Grainger DW, Busscher HJ (2007) The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials 28:4105–4112

    Article  Google Scholar 

  22. Claudia S, Manfred FM, Sandra T et al (2007) In vitro blood reactivity to hydroxylated and non-hydroxylated polymer surfaces. Biomaterials 28:3617–3625

    Article  Google Scholar 

  23. Benjamin GK, Amanda WB, Kellie LB et al (2007) Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials 28:3626–3631

    Article  Google Scholar 

  24. Waya TD, Hsieh SR, Chang CJ, Hung TW, Chiu CH (2010) Preparation and characterization of branched polymers as postoperative anti-adhesion barriers. Appl Surf Sci 256:3330–3336

    Article  Google Scholar 

  25. Hsieh SR, Chang CJ, Way TD, Kwan PC, Hung TW (2009) Preparation and non-invasive in-vivo imaging of anti-adhesion barriers with fluorescent polymeric marks. J Fluoresc 19:733–740

    Article  CAS  Google Scholar 

  26. Erdohan ZO, Turhan BKN (2013) Characterization of antimicrobial polylactic acid based films. J Food Eng 119:308–315

    Article  Google Scholar 

  27. Zhang HJ, Xia HS, Wang J, Li YW (2009) High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release 139:31–39

    Article  CAS  Google Scholar 

  28. Giovino C, Ayensu I, Tetteh J, Boateng JS (2012) Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm 428:143–151

    Article  CAS  Google Scholar 

  29. Hami Z, Amini M, Ghazi-Khansaric M et al (2014) Synthesis and in vitro evaluation of a pH-sensitive PLA–PEG-folate based polymeric micelle for controlled delivery of docetaxel. Colloids Surf B 116:309–317

    Article  CAS  Google Scholar 

  30. Chen AZ, Zhao Z, Wang SB, Li Y, Zhao C, Liu YG (2011) A continuous RESS process to prepare PLA–PEG–PLA microparticles. J Supercrit Fluid 59:92–97

    Article  CAS  Google Scholar 

  31. Xie XX, Wang JT, Qin LF, Wen Z, Guo HP, Lin DH (2012) Preparation and properties of mPEG-PLGA nanoparticles and evaluation of their in vitro anti-adhesive ability. Chin Hosp Pharm J 32:1727–1731

    CAS  Google Scholar 

  32. Grumezescu V, Socol G, Grumezescu AM et al (2014) Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Appl Surf Sci 302:262–267

    Article  CAS  Google Scholar 

  33. Guo XK, Fan YP (2006) Synthesis and characterize of PVA-g-PLLA brush-like graft copolymer. J Shantou Univ (Nat Sci) 21:17–22

    CAS  Google Scholar 

  34. Breitenbach A, Pistel KF, Kissel T (2000) Biodegradable comb polyesters. Part II. Erosion and release properties of poly(vinyl alcohol)-g-poly(lactic-co-glycolic acid). Polymer 41:4781–4792

    Article  CAS  Google Scholar 

  35. Cho JD, Lyoo WS, Chvalum SN et al (1999) X-ray analysis and molecular modeling of polyvinyl alcohol with different stereo regularities. Macromolecules 32:6236–6244

    Article  CAS  Google Scholar 

  36. Nelson SK, Wataha JC, Neme AML, Cibirka RM, Lockwood PE (1999) Cytotoxicity of dental casting alloys pretreated with biologic solutions. J Prosthet Dent 8:591–596

    Article  Google Scholar 

  37. Pioletti DP, Takei H, Lin T, Landuyt PV, Ma QJ, Kwon SY, Sung KLP (2000) The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 21:1103–1114

    Article  CAS  Google Scholar 

  38. Wang J, Ni CH, Zhang YN et al (2014) Preparation and pH controlled release of polyelectrolyte complex of poly(l-malic acid-co-d, l-lactic acid) and chitosan. Colloids Surf B 115:275–279

    Article  CAS  Google Scholar 

  39. He B, Bei JZ, Wang SG (2003) Synthesis and characterization of a functionalized biodegradable copolymer: poly(l-lactide-co-RS-β-malic acid). Polymer 44:989–994

    Article  CAS  Google Scholar 

  40. Calucci L, Forte C, Buwalda SJ et al (2010) Self-aggregation of gel forming PEG–PLA star block copolymers in water. Langmuir 26:12890–12896

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Science and Technology Support Program of Jiangsu Province (BE2012017); National Natural Science Foundation of China (21401079); State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (2012490911); Research Fund for the Doctoral Program of Higher Education (20130093120003). All institutional and national guidelines for the care and use of laboratory animal were followed and approved by the appropriate institutional committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihua Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, C., Lu, R., Tao, L. et al. Synthesis of poly(vinyl alcohol-graft-lactic acid) copolymer and its application as medical anti-tissue adhesion thin film. Polym. Bull. 72, 1515–1529 (2015). https://doi.org/10.1007/s00289-015-1353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1353-0

Keywords

Navigation