Skip to main content
Log in

Viscosity and viscoelasticity measurements of low density polyethylene/poly(lactic acid) blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The rheological properties and the viscoelastic behaviour of blends of polyethylene with different percentages of poly(lactic acid), ranging from 0 to 100 wt%, were studied. In a first part, all blends were examined under steady conditions using a capillary rheometer (at 180, 190 and 200 °C) and dynamic conditions using a parallel plate rheometer. The results showed that all blends behaved like pseudoplastic fluids, with the power–law index values varying between those of polyethylene and polylactide (0.45–0.75 at 180 °C, 0.49–0.77 at 190 °C and 0.54–0.81 at 200 °C). It was also observed that at low shear rate, pure poly(lactic acid) and polyethylene possessed, respectively, the highest and the lowest flow activation energy (66.9 and 48.3 kJ/mol); however, at high shear rate, the greater the content of poly(lactic acid), the lower the activation energy. In addition, poly(lactic acid) exhibited lower viscosity and lower melt elasticity than either polyethylene or the blends. The dynamic rheological study demonstrated that all formulations displayed shear thinning behaviour and only virgin poly(lactic acid) exhibited a clear Newtonian plateau. Also, mainly at low frequencies, polyethylene had the higher values of storage modulus (325 Pa), loss modulus (937 Pa) and complex viscosity (9,740 Pa.s). However, blends had values lying between those of the two homopolymers without any improvement in the storage modulus, loss modulus or complex viscosity. In a second part, the viscoelastic characteristics were investigated using dynamic mechanical thermal analysis (DMTA). DMTA spectra showed an increase in the storage modulus with the increase of poly(lactic acid) content but the opposite was observed for the loss modulus. A cold crystallization of poly(lactic acid) is observed around 87–100 °C and the temperature of glass transition of poly(lactic acid) did not depend on the composition of the blend. These results indicate that LDPE and PLA are immiscible in all proportions either in the melt state or in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944

    Article  CAS  Google Scholar 

  2. Dangtungee R, Desai SS, Tantayanon S et al (2006) Melt rheology and extrudate swell of low-density polyethylene/ethylene–octene copolymer blends. Polym Test 25:888–895

    Article  CAS  Google Scholar 

  3. Baird DG (2008) First normal stress difference measurements for polymer melts at high shear rates in a slit-die using hole and exit pressure data. J Non-Newton Fluid Mech 148:13–23

    Article  CAS  Google Scholar 

  4. Ramanini D (1982) Synthesis technology, molecular structure, and rheological behaviour of polyethylene. Polym Plast Technol Eng 19:201–226

    Article  Google Scholar 

  5. Silva ALN, Rocha MCG, Coutinho FMB (2002) Study of rheological behaviour of elastomer/polypropylene blends. Polym Test 21:289–293

    Article  CAS  Google Scholar 

  6. Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89:3757–3768

    Article  CAS  Google Scholar 

  7. Balakrishnan H, Hassan A, Wahit MU (2010) Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. J Elastom Plast 42:223–239

    Article  CAS  Google Scholar 

  8. Wang Y, Hillmyer MA (2001) Polyethylene-poly(l-lactide) diblock copolymers: synthesis and compatibilization of poly(l-lactide)/polyethylene blends. J Polym Sci, Part A: Polym Chem 39:2755–2766

    Article  CAS  Google Scholar 

  9. Djellali S, Haddaoui N, Sadoun T et al (2013) Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iran Polym J 22:245–257

    Article  CAS  Google Scholar 

  10. Yomogida Y, Tsukada H Li Y et al (2011) Reactive blending of polyethylene and poly(l-lactic acid) using a high-shear extruder. In: The 18th International conference on composite materials, Jeju Island, South Korea, 21–26 August

  11. Jiang G, Huang HX, Chen ZK (2011) Rheological responses and morphology of polylactide/linear low density polyethylene blends produced by different mixing type. Polym Plast Technol Eng 50:1035–1039

    Article  CAS  Google Scholar 

  12. As’habi L, Jafari SH, Khonakdar HA et al (2013) Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence. Express Polym Lett 7:21–39

    Article  Google Scholar 

  13. Sadiku-Agboola O, Sadiku ER, Adegbola AT et al (2011) Rheological properties of polymers: structure and morphology of molten polymer blends. Mater Sci Appl 2:30–41

    CAS  Google Scholar 

  14. Das NC, Wang H, Mewis J et al (2005) Rheology and microstructures formation of immiscible model polymer blends under steady state and transient flows. J Polym Sci, Part B: Polym Phys 43:3519–3533

    Article  CAS  Google Scholar 

  15. Elias L, Fenouillot F, Majeste JC et al (2008) Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49:4378–4385

    Article  CAS  Google Scholar 

  16. Nelson B (2003) Capillary Rheometry. In: Lobo H, Bonilla JV (eds) Handbook of plastics analysis. Marcel Dekker, New York

    Google Scholar 

  17. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley-VCH, New York

    Google Scholar 

  18. Barrera MA, Vega JF, Aguilar M et al (2006) Melt flow index on high molecular weight polyethylene: a comparative study of experiments and simulation. J Mater Process Technol 174:171–177

    Article  CAS  Google Scholar 

  19. Hamad K, Kaseem M, Deri F (2012) Preparation and characterization of binary and ternary blends with poly(lactic acid), polystyrene, and acrylonitrile-butadiene-styrene. J Biomater Nanobiotechnol 3:405–412

    Article  CAS  Google Scholar 

  20. Sarazin P, Li G, Orts WJ et al (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609

    Article  CAS  Google Scholar 

  21. Riande E, Diaz-Calleja R, Prolongo M et al (2000) Polymer viscoelasticity: stress and strain in practice. Marcel Dekker, New York

    Google Scholar 

  22. Borah JS, Chaki TK (2012) Effect of organo-montmorillonite addition on the dynamic and capillary rheology of LLDPE/EMA blends. Appl Clay Sci 59–60:42–49

    Article  Google Scholar 

  23. Wang X, Luo X (2004) A polymer network based on thermoplastic polyurethane and ethylene–propylene–diene elastomer via melt blending: morphology, mechanical properties and rheology. Eur Polym J 40:2391–2399

    Article  CAS  Google Scholar 

  24. Utracki LA, Sammut P (1990) Rheology of polycarbonate/linear low density polyethylene blends. Polym Eng Sci 30:1027–1040

    Article  CAS  Google Scholar 

  25. Xu SA, Zhu L, Xie JW et al (1999) Melt rheology of compatibilized polystyrene/low density polyethylene blends. Polym Int 48:1113–1120

    Article  CAS  Google Scholar 

  26. Han JH, Choi-Feng C, Li DJ et al (1995) Effect of flow geometry on the rheology of dispersed two-phase blends of polystyrene and poly(methyl methacrylate). Polymer 36:2451–2462

    Article  CAS  Google Scholar 

  27. Pisitsak P, Magaraphan R (2009) Rheological, morphological, thermal, and mechanical properties of blends of vectra A950 and poly(trimethylene terephthalate): a study on a high-viscosity-ratio system. Polym Test 28:116–127

    Article  CAS  Google Scholar 

  28. Grmela M, Ait-Kadi A, Utracki LA (1998) Blends of two immiscible and rheologically different fluids. J Non-Newton Fluid Mech 77:253–259

    Article  CAS  Google Scholar 

  29. Wang N, Yu J, Chang PR et al (2008) Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydr Polym 71:109–118

    Article  CAS  Google Scholar 

  30. Peacock AJ (2002) Handbook of polyethylene: Structures. Properties and Applications. Marcel Dekker, New York

    Google Scholar 

  31. Shenoy AV (1999) Rheology of filled polymer systems. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  32. Liang JZ, Yang J, Tang CY (2010) Die-swell behaviour of PP/Al(OH)3/Mg(OH)2 flame retardant composite melts. Polym Test 29:624–628

    Article  CAS  Google Scholar 

  33. Wong ACY, Liang JZ (1997) Relationship between die swell ratio and melt flow index. Chem Eng Sci 52:3219–3221

    Article  CAS  Google Scholar 

  34. Han CD (2007) Rheology and processing of polymeric materials: polymer rheology. Oxford University Press, Oxford

    Google Scholar 

  35. Acierno D, Curto D, La Mantia FP et al (1986) Flow properties of low density/linear low density polyethylene. Polym Eng Sci 26:28–33

    Article  CAS  Google Scholar 

  36. Liang JZ, Ness JN (1998) The melt die-swell behaviour during capillary extrusion of LDPE/PP blends. Polym Test 17:179–189

    Article  CAS  Google Scholar 

  37. Kim J, Kim JH, Shin TK et al (2001) Miscibility and rheological characteristics of biodegradable aliphatic polyester and linear low density polyethylene blends. Eur Polym J 37:2131–2139

    Article  CAS  Google Scholar 

  38. Joseph S, Oommen Z, Thomas S (2002) Melt elasticity and extrudate characteristics of polystyrene/polybutadiene blends. Mater Lett 53:268–276

    Article  CAS  Google Scholar 

  39. Nair SV, Oommen Z, Thomas S (2002) Melt elasticity and flow activation energy of nylon 6/polystyrene blends. Mater Lett 57:475–480

    Article  CAS  Google Scholar 

  40. Shan CLP, Soares JBP, Penlidis A (2003) HDPE/LLDPE reactor blends with bimodal microstructures—Part II: rheological properties. Polymer 44:177–185

    Article  CAS  Google Scholar 

  41. Chaput S, Carrot C, Castro M et al (2004) Co-continuity interval in immiscible polymer blends by dynamic mechanical spectroscopy in the molten and solid state. Rheol Acta 43:417–426

    Article  CAS  Google Scholar 

  42. Chuang HK, Han CD (1984) Rheological behaviour of polymer blends. J Appl Polym Sci 29:2205–2229

    Article  CAS  Google Scholar 

  43. Yang H, Han CD, Kim JK (1994) Rheology of miscible blends of poly(methyl methacrylate) with poly(styrene-co-acrylonitrile) and with poly(vinylidene fluoride). Polymer 35:1503–1511

    Article  CAS  Google Scholar 

  44. Abdel-Bary EM (2003) Handbook of plastic films. Rapra Technology, Shrewsbury

    Google Scholar 

  45. Ren Z, Dong L, Yang Y (2006) Dynamic mechanical and thermal properties of plasticized poly(lactic acid). J Appl Polym Sci 101:1583–1590

    Article  CAS  Google Scholar 

  46. Hagen R, Salmen L, Lavebratt H et al (1994) Comparison of dynamic mechanical measurements and Tg determinations with two different instruments. Polym Test 13:113–128

    Article  CAS  Google Scholar 

  47. Rieger J (2001) The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test 20:199–204

    Article  CAS  Google Scholar 

  48. Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45:8239–8251

    Article  CAS  Google Scholar 

  49. Pluta M, Murariu M, Alexandre M et al (2008) Polylactide compositions: the influence of ageing on the structure, thermal and viscoelastic properties of PLA/calcium sulfate composites. Polym Degrad Stabil 93:925–931

    Article  CAS  Google Scholar 

  50. Menard KP (2003) Thermomechanical and Dynamic Mechanical Analysis. In: Lobo H, Bonilla JW (eds) Handbook of plastic analysis. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Djellali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djellali, S., Sadoun, T., Haddaoui, N. et al. Viscosity and viscoelasticity measurements of low density polyethylene/poly(lactic acid) blends. Polym. Bull. 72, 1177–1195 (2015). https://doi.org/10.1007/s00289-015-1331-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1331-6

Keywords

Navigation