Skip to main content
Log in

Porous rubber cryogels: effect of the gel preparation temperature

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper examines the effect of the gel preparation temperature (T prep) on the physical properties of the rubber-based macroporous organogels prepared by solution crosslinking in benzene at subzero temperatures. Cis-polybutadiene (CBR) and styrene-butadiene rubber (SBR) were used as the rubber components, while sulfur monochloride (S2Cl2) was the crosslinker in the gel preparation. It was shown that T prep is an extremely important parameter to adjust the porous structure and thus, the cryogel properties. The networks formed by CBR and SBR showed an aligned porous structure with an exception of honey-comb structured porous SBR cryogels prepared at −2 °C. 101- to 102-μm sized regular pores of the networks caused by the benzene crystals act as a template during gelation, separated by 10–20 μm pore walls in thickness. They exhibit fast swelling and deswelling properties as well as reversible swelling–deswelling cycles in toluene and methanol, respectively. The ability of the organogels for the removal of petroleum products from aqueous solutions was also demonstrated using diesel and crude oil as model pollutants. In addition, the reusability of the organogels and their continuous sorption capacities were checked by repeated sorption–squeezing cycles. All the tests showed that the aligned porous organogels are suitable materials for the oil spill cleanup procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghannam MT, Chaalal O (2003) Oil spill cleanup using vacuum technique. Fuel 82(7):789–797. doi:10.1016/S0016-2361(02)00383-6

    Article  CAS  Google Scholar 

  2. Lessard RR, DeMarco G (2000) The significance of oil spill dispersants. Spill Sci Technol Bull 6(1):59–68. doi:10.1016/S1353-2561(99)00061-4

    Article  CAS  Google Scholar 

  3. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10(3):159–170

    Article  CAS  Google Scholar 

  4. Lim T-T, Huang X (2007) Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66(5):955–963. doi:10.1016/j.chemosphere.2006.05.062

    Article  CAS  Google Scholar 

  5. Johnson RF, Manjreker TG, Halligan JE (1973) Removal of oil from water surfaces by sorption on unstructured fibers. Environ Sci Technol 7(5):439–443. doi:10.1021/es60077a003

    Article  CAS  Google Scholar 

  6. Ceylan D, Dogu S, Karacik B, Yakan SD, Okay OS, Okay O (2009) Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ Sci Technol 43(10):3846–3852. doi:10.1021/es900166v

    Article  CAS  Google Scholar 

  7. Ceylan D, Okay O (2007) Macroporous polyisobutylene gels: a novel tough organogel with superfast responsivity. Macromolecules 40(24):8742–8749. doi:10.1021/ma071605j

    Article  CAS  Google Scholar 

  8. Karakutuk I, Okay O (2010) Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React Funct Polym 70(9):585–595. doi:10.1016/j.reactfunctpolym.2010.05.015

    Article  CAS  Google Scholar 

  9. Dogu S, Okay O (2008) Tough organogels based on polyisobutylene with aligned porous structures. Polymer 49(21):4626–4634. doi:10.1016/j.polymer.2008.08.024

    Article  CAS  Google Scholar 

  10. Vainerman ES, Lozinsky VI, Rogozhin SV (1981) Study of cryostructurization of polymer systems. Colloid Polym Sci 259(12):1198–1201. doi:10.1007/BF01525014

    Article  CAS  Google Scholar 

  11. Lozinsky VI, Vainerman ES, Titova EF, Belavtseva EM, Rogozhin SV (1984) Study of cryostructurization of polymer systems. Colloid Polym Sci 262(10):769–774. doi:10.1007/BF01451705

    Article  Google Scholar 

  12. Lozinsky VI, Vainerman ES, Korotaeva GF, Rogozhin SV (1984) Study of cryostructurization of polymer systems. Colloid Polym Sci 262(8):617–622. doi:10.1007/BF01452452

    Article  Google Scholar 

  13. Lozinsky V, Plieva F, Galaev I, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseparation 10(4–5):163–188. doi:10.1023/A:1016386902611

    Article  CAS  Google Scholar 

  14. Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russ Chem Rev 71(6):489–511

    Article  CAS  Google Scholar 

  15. Ozmen MM, Okay O (2005) Superfast responsive ionic hydrogels with controllable pore size. Polymer 46(19):8119–8127. doi:10.1016/j.polymer.2005.06.102

    Article  CAS  Google Scholar 

  16. Plieva F, Huiting X, Galaev IY, Bergenstahl B, Mattiasson B (2006) Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. J Mater Chem 16(41):4065–4073

    Article  CAS  Google Scholar 

  17. Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48(1):195–204. doi:10.1016/j.polymer.2006.11.022

    Article  CAS  Google Scholar 

  18. Mattiasson B, Kumar A, Galaev IY (2010) Macroporous polymers. Production, properties, and biotechnological/biomedical applications. CRC Press, New York

    Google Scholar 

  19. Kirsebom H, Mattiasson B (2011) Cryostructuration as a tool for preparing highly porous polymer materials. Polym Chem 2(5):1059–1062. doi:10.1039/C1PY00014D

    Article  CAS  Google Scholar 

  20. Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533. doi:10.1002/adma.200700154

    Article  CAS  Google Scholar 

  21. Zhang H, Edgar D, Murray P, Rak-Raszewska A, Glennon-Alty L, Cooper AI (2008) Synthesis of porous microparticles with aligned porosity. Adv Funct Mater 18(2):222–228. doi:10.1002/adfm.200701309

    Article  CAS  Google Scholar 

  22. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779. doi:10.1016/s0079-6700(00)00015-0

    Article  CAS  Google Scholar 

  23. Plieva FM, Galaev IY, Mattiasson B (2009) Production and properties of cryogels by radical polymerization. In: Bo Mattiasson AK, Igor Yu Galaev (ed) Macroporous polymers, production properties and biotechnological/biomedical applications. CRC Press, Taylor&Francis Group, US, pp 23–47. doi:10.1201/9781420084627-p1

  24. Lozinsky VI, Morozova SA, Vainerman ES, Titova EF, Shtil’Man MI, Belavtseva EM, Rogozhin SV (1989) Study of cryostructurization of polymer systems. VIII. Characteristic features of the formation of crosslinked poly(acryl amide) cryogels under different thermal conditions. Acta Polym 40(1):8–15. doi:10.1002/actp.1989.010400103

    Article  Google Scholar 

  25. Körber C, Rau G, Cosman MD, Cravalho EG (1985) Interaction of particles and a moving ice–liquid interface. J Cryst Growth 72(3):649–662. doi:10.1016/0022-0248(85)90217-9

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK), TBAG–107Y178. O.O thanks the Turkish Academy of Sciences (TUBA) for their partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz C. Tuncaboylu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oztoprak, Z., Hekimoglu, T., Karakutuk, I. et al. Porous rubber cryogels: effect of the gel preparation temperature. Polym. Bull. 71, 1983–1999 (2014). https://doi.org/10.1007/s00289-014-1167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1167-5

Keywords

Navigation