Skip to main content
Log in

Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper reports the development of hybrid copolymer poly vinyl alcohol hydrogel (H-PVA) based on acrylic acid (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPSA) and ethylene glycol dimethacrylate (EGDMA). The H-PVA hydrogels were used for controlled release study of highly water-soluble antidepressant drug (venlafaxine). The formation of new structure was confirmed by Fourier transform infrared spectroscopy. The morphology of dry hydrogel slabs was examined by scanning electron microscopy. Thermal gravimetric analysis of hydrogels showed that there was an increase in thermal stability of H-PVA hydrogels. Swelling experiments performed in acidic and basic media provided important information on drug release properties of hydrogels. The release of venlafaxine was significantly retarded in pH 1.2, while rapid release was observed in pH 7.4. The release rate of venlafaxine increased with increasing ratio of AA and AMPSA. However, extent of drug release was significantly reduced on increasing ratio of EGDMA. Mechanism of release has been analyzed using various mathematical models. H-PVA hydrogel slabs were able to sustain the release of venlafaxine more than 20 h. The results of the study suggest that optimized H-PVA hydrogels could serve as suitable controlled release matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  Google Scholar 

  2. Karaaslan MA, Tshabalalab MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr Polym 86:192–201

    Article  CAS  Google Scholar 

  3. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  4. Baroli B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96:2197–2223

    Article  CAS  Google Scholar 

  5. Casadei MA, Pitarresi G, Calabrese R, Paolicelli P, Giammona G (2008) Biodegradable and pH-sensitive hydrogels for potential colon-specific drug delivery:characterization and in vitro release studies. Biomacromolecules 9:43–49

    Article  CAS  Google Scholar 

  6. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  7. Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194–8203

    Article  CAS  Google Scholar 

  8. Thakur A, Wanchoo RK, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly(acrylamide-co-acrylic acid)hydrogels. Chem Biochem Eng Q 25:181–194

    CAS  Google Scholar 

  9. Tavakol M, Vasheghani-Farahani E, Dolatabadi- Farahani T, Hashemi-Najafabadi S (2009) Sulfasalazine release from alginate-N, O-carboxymethyl chitosan gel beads coated by chitosan. Carbohydr Polym 77:326–330

    Article  CAS  Google Scholar 

  10. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408

    Article  CAS  Google Scholar 

  11. Oh JK, Siegwart DJ, Lee H, Sherwood G, Peteanu L, Hollinger JO, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 18:5939–5945

    Article  Google Scholar 

  12. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    Article  CAS  Google Scholar 

  13. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  14. Tu H, Qu Y, Hu X, YIin Y, Zheng H, Xu P, Xiong F (2010) Study of the sigmoidal swelling kinetics of carboxymethylchitosan-g-poly (acrylic acid) hydrogels intended for colon-specific drug delivery. Carbohydr Polym 82:440–445

    Article  CAS  Google Scholar 

  15. Kadlubowski S, Henke A, Ulanski P, Rosiak JM, Bromberg L, Hatton A (2007) Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by photo induced crosslinking of homopolymers. Polym 48:4974–4981

    Article  CAS  Google Scholar 

  16. Akkaya MC, Emik S, Guclu G, Iyim TB, Ozgumus S (2009) Removal of basic dyes from aqueous solutions by crosslinked-acrylic acid/acrylamidopropane sul-fonic acid hydrogels. J Appl Polym Sci 114:1150–1159

    Article  CAS  Google Scholar 

  17. Yetimoglu EK, Kahraman MV, Ercan O, Ak-demir ZS, Apohan NK (2007) N. N-vinylpyyrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67:451–460

    Article  CAS  Google Scholar 

  18. Kun RC, Delibas A (2012) Removal of methylene blue from aqueous solutions by poly(2-acrylamido-2-methylpropane sulfonic acid-co-itaconic acid) hydrogels. Polym Bull 68:1889–1903

    Article  Google Scholar 

  19. Rao KSVK, Ha C (2009) pH Sensitive hydrogels based on acryl amides and their swelling and diffusion characteristics with drug delivery behavior. Polym Bull 62:167–181

    Google Scholar 

  20. Zhang L, Yu P, Luo YB (2007) Dehydration of caprolactam–water mixtures through cross-linked PVA composite pervaporation membranes. J Membr Sci 306:93–102

    Article  CAS  Google Scholar 

  21. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chem Toxicol 41:319–326

    Article  CAS  Google Scholar 

  22. Zhao L, Xiong W, Liu M, Qi Z (2010) Study on superabsorbent of maleic anhydride/acrylamide semi-interpenetrated with poly(vinyl alcohol). Polym Advan Technol 21:483–489

    Article  CAS  Google Scholar 

  23. YerriSwamy B, Venkata Prasad C, Reedy CLN, Mallikarjuna B (2011) Interpenetrating polymer network microspheres of hydroxy propyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride. Cellulose 18:349–357

    Article  CAS  Google Scholar 

  24. Eastman SA, Lesser AJ, McCarthy TJ (2010) Quantitative poly (vinyl alcohol) modification in ionic liquids: esterification and urethanation with low surface tension producing reagents. Macromolecules 43:4584–4588

    Article  CAS  Google Scholar 

  25. Ghugare SV, Mozetic P, Paradossi G (2009) Temperature sensitive poly (vinyl alcohol)/poly(methacrylate-co-N isopropyl acrylamide) microgels for doxorubicin delivery. Biomacromolecules 10:1589–1596

    Article  CAS  Google Scholar 

  26. Kartal F, Akkaya A, Kilinc A (2009) Immobilization of porcine pancreatic lipase on glycidyl methacrylate grafted poly vinyl alcohol. J Mol Catal B-Enzym 57:55–61

    Article  CAS  Google Scholar 

  27. Yun J, Im JS, Lee Y, Yoo SJ, Kim H (2011) Sustained release behavior of pH-responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogels containing activated carbon fibers. J Appl Polym Sci 120:1050–1056

    Article  CAS  Google Scholar 

  28. Jung G, Yun J, Kim H (2012) Temperature and pH-responsive release behavior of PVA/PAAC/PNIPAAM/MWCNTS nano composite hydrogels. Carbo Lett 13:173–177

    Article  Google Scholar 

  29. Wu W, Liu J, Cao S, Tan H, Li J, Xu F, Zhang X (2011) Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2 (dimethylamino)ethyl methacrylate]. Int J Pharm 416:104–109

    Article  CAS  Google Scholar 

  30. Olver JS, Burrows GD, Norman TR (2001) Third-generation antidepressants: do they offer advantages over the SSRIs? CNS Drug 15:941–954

    Article  CAS  Google Scholar 

  31. Entsuah R, Chitra R (1997) A benefit–risk analysis of once-daily venlafaxine extended release (XR) and venlafaxine immediate release (IR) in outpatients with major depression. Psychopharmacol Bull 33:671–676

    CAS  Google Scholar 

  32. Kilts CD (2003) Potential new drug delivery systems for antidepressants: an overview. J Clin Psychiatry 64(suppl 18):31–33

    CAS  Google Scholar 

  33. Ismail O, Kipcak AS, Piskin S (2013) Modeling of absorption kinetics of poly(acrylamide) hydrogels crosslinked by EGDMA and PEGDMA. Res Chem Med 39:907–919

    CAS  Google Scholar 

  34. Pourjavadi A, Barzegar S (2009) Smart pectin based superabsorbent hydrogel as a matrix for ibuprofen as an oral non-steroidal anti-inflammatory drug delivery. Starch/Stärke 61:173–183

    Article  CAS  Google Scholar 

  35. Najib N, Suleiman M (1985) The kinetics of drug release from ethyl cellulose solid dispersions. Drug Dev Ind Pharm 11:2169–2189

    Article  CAS  Google Scholar 

  36. Desai SJ, Singh P, Simonelli AP, Higuchi WI (1966) Investigation of factors influencing release of solid drug dispersed in wax matrices III: quantitative studies involving polyethylene plastic matrix. J Pharm Sci 55:1230–1234

    Article  CAS  Google Scholar 

  37. Higuchi T (1963) Mechanism of sustained action medication, theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  Google Scholar 

  38. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharma Acta Helv 60:110–111

    CAS  Google Scholar 

  39. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iranian Polym J 19:375–398

    CAS  Google Scholar 

  40. Turan E, Demirci S, Caykara T (2008) Thermo- and pH-induced phase transitions and network parameters of poly (n-isopropylacrylamide-co-2-acrylamido-2-methyl-propanesulfonic acid) hydrogels. J Polm Sci Pol Phys 46:1713–1724

    Article  CAS  Google Scholar 

  41. Li Y, Ke A, Lin S, Ouyang N (2011) Synthesis and properties of superabsorbent hygroscopic materials based on polyacrylamide and poly(2-acrylamido-2-methyl propyl sulfonic acid) co-polymer. Int J Polym Mater 60:1164–1177

    Article  CAS  Google Scholar 

  42. Wang W, Wang Q, Wang A (2011) pH-responsive carboxymethylcellulose-g-poly (sodium acrylate)/polyvinylpyrrolidone semi-ipn hydrogels with enhanced responsive and swelling properties. Macromol Res 19:57–65

    Article  CAS  Google Scholar 

  43. Yetimoğlu EK, Kahraman MV, Ercan Ö, Akdemir ZS, Apohan NK (2007) N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67:451–460

    Article  Google Scholar 

  44. Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG (2009) Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim 97:729–733

    Article  CAS  Google Scholar 

  45. Sadeghi M, Hosseinzadeh H (2010) Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g-poly (AMPS). Turk J Chem 34:739–752

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Higher Education Commission of Pakistan in the form of PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, L., Ahmad, M., Usman, M. et al. Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels. Polym. Bull. 71, 31–46 (2014). https://doi.org/10.1007/s00289-013-1043-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1043-8

Keywords

Navigation