Skip to main content
Log in

Synthesis and multi-stimuli-responsive behavior of copolymer of N,N′-dimethylacrylamide and complex pseudorotaxane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel water-soluble side-chain copolymer with the pseudorotaxane structure threaded by cucurbit[6]uril (CB[6]) was synthesized by N′-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride with CB[6] threaded (4VBCB) and N,N′-dimethylacrylamide (DMAA) as monomers. SEM results show that the diameter of the spherical particles increases and the crosslinking in spherical particles occurred with the decrease of the molar ratio of DMAA/4VBCB. Interestingly, 1H NMR spectra show that the threading and dethreading of CB[6] on the side chains could be controlled by the addition of CaCl2 or BaCl2, but CB[6] cannot drop from the side chains by the addition of NaCl. DLS data indicate that the copolymers have thermal sensitivity and their jump temperature could be controlled by adjusting the molar ratio of DMAA/4VBCB, and RLS data show that the size of aggregation increases with increasing the concentration of NaCl. At the same time, the copolymers have pH-responsive behavior.

Graphical Abstract

Novel water-soluble side-chain copolymer with the pseudorotaxane structure threaded by cucurbit[6]uril (CB[6]) was synthesized. Interestingly, the threading and dethreading of CB[6] on the side chains could be controlled by the addition of CaCl2 or BaCl2, but CB[6] cannot drop from the side chains by the addition of NaCl. And Na2CO3 or Na2SO4 was added into the CaCl2 or BaCl2 solution of copolymer for the removal of Ca2+ or Ba2+. As expected, CB[6] could thread on the side chains again as shown in Fig. 6a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Raymo FM, Stoddart JF (1999) Interlocked macromolecules. Chem Rev 99:1643

    Article  CAS  Google Scholar 

  2. Lehn JM (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angew Chem Int Ed 27:89

    Article  Google Scholar 

  3. Gibson HW, Bheda MC, Engen PT (1994) Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials. Prog Polym Sci 19:843

    Article  CAS  Google Scholar 

  4. Amabilino DB, Stoddart JF (1995) Interlocked and intertwined structures and superstructures. Chem Rev 95:2725

    Article  CAS  Google Scholar 

  5. Nepogodiev SA, Stoddart JF (1998) Cyclodextrin-based catenanes and rotaxanes. Chem Rev 98:1959

    Article  CAS  Google Scholar 

  6. Balzani V, Gomez-Lopez M, Stoddart JF (1998) Molecular machines. Acc Chem Res 31:405

    Article  CAS  Google Scholar 

  7. Chamborn J, Sauvage J (1998) Functional rotaxanes: from controlled molecular motions to electron transfer between chemically nonconnected chromophores. Chem Eur J 4:1362

    Article  Google Scholar 

  8. Murakami H, Kawabuvhi A, Kotoo K, Kunitake M, Nakashima N (1997) A light-driven molecular shuttle based on a rotaxane. J Am Chem Soc 19:7605

    Article  Google Scholar 

  9. Bissell RA, Cordova E, Kaifer AE, Stoddart JF (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133

    Article  CAS  Google Scholar 

  10. Lane AS, Leigh DA, Murphy A (1997) Peptide-based molecular shuttles. J Am Chem Soc 119:11092

    Article  CAS  Google Scholar 

  11. Jun SI, Lee JW, Sakamoto S, Yamaguchi K, Kim K (2000) Rotaxane-based molecular switch with fluorescence signaling. Tetrahedron Lett 41:471

    Article  CAS  Google Scholar 

  12. Choi SW, Park SH, Ziganshina AY, Ko YH, Lee JW, Kim K (2003) A stable cis-stilbene derivative encapsulated in cucurbit[7]uril. Chem Commun 18:2176

    Article  Google Scholar 

  13. Tuncel D, Steinke JHG (1999) Formation of oligotriazoles catalysed by cucurbituril. Chem Commun 16:1509

    Article  Google Scholar 

  14. Tuncel D, Steinke JHG (2001) Mainchain pseudopolyrotaxanes via post-threading with cucurbituril. Chem Commun 3:253

    Article  Google Scholar 

  15. Krasia TC, Steinke JHG (2002) Formation of oligotriazoles catalysed by cucurbituril. Chem Commun 1:22

    Article  Google Scholar 

  16. Tuncel D, Steinke JHG (2004) Catalytic self-threading: a new route for the synthesis of polyrotaxanes. Macromolecules 37:288

    Article  CAS  Google Scholar 

  17. Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded-cyclodextrins. Nature 356:325

    Article  CAS  Google Scholar 

  18. Harada A, Li J, Kamachi M (1993) Macromolecular recognition. Formation of inclusion complexes of polymers with cyclodextrins. Proc Jpn Acad Ser B 69:39

    Article  CAS  Google Scholar 

  19. Kamitori S, Matsuzaka O, Kondo S, Muraoka S, Okuyama K, Noguchi K, Okada M, Harada A (2000) A novel pseudo-polyrotaxane structure composed of cyclodextrins and a straight-chain polymer: crystal structures of inclusion complexes of β-cyclodextrin with poly(trimethylene oxide) and poly(propylene glycol). Macromolecules 33:1500

    Article  CAS  Google Scholar 

  20. Herrmann W, Keller B, Wenz G (1997) Kinetics and thermodynamics of the inclusion of ionene-6, aqueous solution. Macromolecules 30:4966

    Article  CAS  Google Scholar 

  21. Fujita H, Ooya T, Yui N (1999) Thermally induced localization of cyclodextrins in a polyrotaxane consisting of β-cyclodextrins and poly(ethylene glycol)–poly(propylene glycol) triblock-copolymer. Macromolecules 32:2534

    Article  CAS  Google Scholar 

  22. Harada A, Okada M, Kawaguchi Y, Kamachi M (1999) Macromolecular recognition: new cyclodextrin polyrotaxanes and molecular tubes. Polym Adv Technol 10:3

    Article  CAS  Google Scholar 

  23. Hodge P, Monvisade P, Owen GJ, Heatley F, Pang Y (2000) 1H NMR spectroscopic studies of the structures of a series of pseudopolyrotaxanes formed by “threading”. New J Chem 24:703

    Article  CAS  Google Scholar 

  24. Gong CG, Ji Q, Subramaniam C, Gibson HW (1998) Main chain polyrotaxanes by threating crown ethers onto a preformed polyurethane: preparation and properties. Macromolecules 31:1814

    Article  CAS  Google Scholar 

  25. Mason PE, Bryant WS, Gibson HW (1999) Dethreading exchange rates as structural probes in polypseudorotaxanes. Macromolecules 32:1559

    Article  CAS  Google Scholar 

  26. Takata T, Kihara N, Furusho Y (2004) Polyrotaxanes and polycatenanes: recent advances in syntheses and applications of polymers comprising of interlocked structures. Adv Polym Sci 171:1

    Article  CAS  Google Scholar 

  27. Huang F, Gibson HW (2005) Polypseudorotaxanes and polyrotaxanes. Prog Polym Sci 30:982

    Article  CAS  Google Scholar 

  28. Harada A, Hashizume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974

    Article  CAS  Google Scholar 

  29. Day A, Arnold AP, Blanch RJ, Snushall BJ (2001) Controlling factors in the synthesis of cucurbituril and its homologues. Org Chem 66:8094

    Article  CAS  Google Scholar 

  30. Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122:540

    Article  CAS  Google Scholar 

  31. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621

    Article  CAS  Google Scholar 

  32. Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96

    Article  CAS  Google Scholar 

  33. Rekharsky MV, Ko YH, Selvapalam N, Kim K, Inoue Y (2007) Complexation thermodynamics of cucurbit[6]uril with aliphatic alcohols, amines, and diamines. Supramol Chem 19:39

    Article  CAS  Google Scholar 

  34. Kim Y, Kim H, Ko YH, Selvapalam N, Rekharsky MV, Inoue Y, Kim K (2009) Complexation of aliphatic ammonium ions with a water-soluble cucurbit[6]uril derivative in pure water: isothermal calorimetric, NMR, and X-ray crystallographic study. Chem Eur J 15:6143

    Article  CAS  Google Scholar 

  35. Kim K, Selvapalam N, Oh DH (2004) Cucurbiturils—a new family of host molecules. J Incl Phenom Macrocycl Chem 50:31

    CAS  Google Scholar 

  36. Park KM, Kim SY, Heo J, Whang D, Sakamoto S, Yamaguchi K, Kim K (2002) Synthetic molecular machine based on reversible end-to-interior and end-to-end loop formation triggered by electrochemical stimuli. J Am Chem Soc 124:2140

    Article  CAS  Google Scholar 

  37. Kim K, Jeon WS, Kang JK, Lee JW, Jon SY, Kim T, Kim K (2003) A pseudorotaxane on gold: formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew Chem 115:2395

    Article  Google Scholar 

  38. Kim J, Kim Y, Baek K, Ko YH, Kim D, Kim K (2008) Direct force measurement between cucurbit[6]uril and spermine using atomic force microscopy. Tetrahedron 64:8389

    Article  CAS  Google Scholar 

  39. Whang DM, Park KM, Heo J, Ashton P, Kim K (1998) Molecular necklace: quantitative self-assembly of a cyclic oligorotaxane from nine molecules. J Am Chem Soc 120:4899

    Article  CAS  Google Scholar 

  40. Lee ES, Heo JS, Kim K (2000) A three-dimensional polyrotaxane network. Angew Chem Int Ed 39:2699

    Article  CAS  Google Scholar 

  41. Lee JW, Kim KP, Kim K (2001) A kinetically controlled molecular switch based on bistable [2]rotaxane. Chem Commun 11:1042

    Google Scholar 

  42. Tan YB, Choi SW, Lee JW, Ko YH, Kim K (2002) Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules 35:7161

    Article  CAS  Google Scholar 

  43. Choi S, Lee JW, Ko YH, Kim K (2002) Pseudopolyrotaxanes made to order: cucurbituril threaded on polyviologen. Macromolecules 35:3526

    Article  CAS  Google Scholar 

  44. Jeon WS, Ziganshina AY, Lee JW, Ko YH, Kang JK, Lee C, Kim K (2003) A [2]pseudorotaxane-based molecular machine: reversible formation of a molecular loop driven by electrochemical and photochemical stimuli. Angew Chem Int Ed 382(42):4097

    Article  Google Scholar 

  45. Kim K, Jeon WS, Kang JK, Lee JW, Jon SY, Kim T (2003) A pseudorotaxane on gold: formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior. Angew Chem Int Ed 42:2293

    Article  CAS  Google Scholar 

  46. Kim K, Kim D, Lee JW, Ko YH (2004) Growth of poly(pseudorotaxane) on gold using host-stabilized charge-transfer interaction. Chem Commun 7:848

    Article  Google Scholar 

  47. Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K (2004) Microporous manganese formate: a simple metal−organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc 126:32

    Article  CAS  Google Scholar 

  48. Buschmann HJ, Meschke C, Schollmeyer E (1998) Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. An Quim Int Ed 94:241

    CAS  Google Scholar 

  49. Buschmann HJ, Jansen K, Schollmeyer E (1998) Thermodynamic data for complex formation between cucurbituril and alkali and alkaline earth cations in aqueous formic acid solution. J Solution Chem 27:135

    Article  CAS  Google Scholar 

  50. Meschke C, Buschmann HJ, Schollmeyer E (1999) Polyrotaxanes and pseudopolyrotaxanes of polyamides and cucurbituril. Polymer 40:945

    Article  CAS  Google Scholar 

  51. Buschmann HJ, Jansen K, Schollmeyer E (2000) Cucurbituril as host molecule for the complexation of aliphatic alcohols, acids and nitriles in aqueous solution. Thermochim Acta 346:33

    Article  CAS  Google Scholar 

  52. Yamaguchi N, Gibson HW (2000) Non-covalent chemical modification of crown ether side chain polymethacrylates with a secondary ammonium salt: a new polypseudorotaxane. Macromol Chem Phys 201:815

    Article  CAS  Google Scholar 

  53. Freitag M, Galoppini E (2010) Cucurbituril complexes of viologens bound to TiO2 films. Langmuir 26:8262

    Article  CAS  Google Scholar 

  54. Thangavel A, Rawashdeh A, Sotiriou-Leventis C, Leventis A (2009) Ultrafast asynchronous concerted excited-state intramolecular proton transfer and photodecarboxylation of o-acetylphenylacetic acid explored by combined CASPT2 and CASSCF studies. Org Lett 11:1595

    Article  CAS  Google Scholar 

  55. Ogoshi T, Masuda K, Yamagishi T, Nakamoto Y (2009) Side-chain polypseudorotaxanes with heteromacrocyclic receptors of cyclodextrins (CDs) and cucurbit[7]uril (CB7): their contrast lower critical solution temperature behavior with α-CD, γ-CD, and CB7. Macromolecules 42:8003

    Article  CAS  Google Scholar 

  56. Mock WL (1995) Supramolecular chemistry II—host design and molecular recongnition. Top Curr Chem 175:1

    Article  CAS  Google Scholar 

  57. Kim C, Agasti S, Zhu Z, Isaacs L, Rotello V (2010) Host–guest chemistry inside the cell: recognition-mediated activation of therapeutic gold nanoparticles. Nat Chem 2:962

    Article  CAS  Google Scholar 

  58. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem 117:4922

    Article  Google Scholar 

  59. Mukhopadhyay P, Zavalij PY, Isaacs L (2006) High fidelity kinetic self-sorting in multi-component systems based on guests with multiple binding epitopes. J Am Chem Soc 128:14093

    Article  CAS  Google Scholar 

  60. Isaacs L (2009) Cucurbit[n]urils: from mechanism to structure and function. Chem Commun 9:619

    Article  Google Scholar 

  61. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, Keeffe MO, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58

    Article  CAS  Google Scholar 

  62. Jiao D, Biedermann F, Tian F, Scherman OA (2010) A systems approach to controlling supramolecular architecture and emergent solution properties via host−guest complexation in water. J Am Chem Soc 132:15734

    Article  CAS  Google Scholar 

  63. Yang H, Tan YB, Wang YX (2009) Fabrication and properties of cucurbit[6]uril induced thermo-responsive supramolecular hydrogels. Soft Matter 5:3511

    Article  CAS  Google Scholar 

  64. Hou ZS, Tan YB, Huang YL, Zhang Y, Zhou QF (2005) Synthesis and characterization of side-chain pesodopolyrotaxanes by supramolecular self-assembly of cucurbituril[6] and poly(4-vinyl-N-n-butypyridinium bromide). Acta Polym Sin 4:491

    Google Scholar 

  65. Hou ZS, Tan YB, Kim K, Zhou QF (2006) Synthesis, characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril[6] and poly-N1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride. Polymer 47:742

    Article  CAS  Google Scholar 

  66. Hou ZS, Tan YB, Zhou QF (2006) Side-chain pseudopolyrotaxanes by threading cucurbituril[6] onto quaternized poly-4-vinylpyridine derivative: synthesis and properties. Polymer 47:5267

    Article  CAS  Google Scholar 

  67. Huang XL, Tan YB, Wang YX, Yang H, Cao J, Che YJ (2008) Synthesis, characterization, and properties of copolymer of acrylamide and complex pseudorotaxane monomer consisting of cucurbit[6]uril with butyl ammonium methacrylate. J Polym Sci A 46:5999

    Article  CAS  Google Scholar 

  68. Yang H, Tan YB, Hao JC (2010) Side-chain polypseudorotaxanes by threading cucurbit[7]uril onto poly-N-n-butyl-N′-(4-vinylbenzyl)-4,4′-bipyridinium bromide chloride: synthesis, characterization, and properties. J Polym Sci A 48:2135

    Article  CAS  Google Scholar 

  69. Yang H, Tan YB, Hao JC (2011) Cucurbit[7]uril moving on side chains of polypseudorotaxanes: synthesis, characterization and properties. J Polym Sci A 49:2138

    Article  CAS  Google Scholar 

  70. Dhara D, Chatterji PR (2000) Swelling and deswelling pathways in non-ionic poly(N-isopropylacrylamide) hydrogels in presence of additives. Polymer 41:6133

    Article  CAS  Google Scholar 

  71. Kakinoki S, Kaetsu I, Nakayama M, Sutani K, Uchida K, Yukutake K (2003) Temperature and pH responsiveness of poly-(DMAA-co-unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation. Radiat Phys Chem 67:685

    Article  CAS  Google Scholar 

  72. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732

    Article  CAS  Google Scholar 

  73. Lin Z, Cheng Y, Lv H, Zhang L, Yang B (2010) Preparation and characterization of novel ZnS/sulfur-containing polymer nanocomposite optical materials with high refractive index and high nanophase contents. Polymer 51:5424

    CAS  Google Scholar 

  74. Debye P (1947) Molecular-weight determination by light scattering. J Phys Colloid Chem 51:18

    Article  CAS  Google Scholar 

  75. Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1099

    Article  CAS  Google Scholar 

  76. Li YB, Chen XD, Zhang MQ, Luo WA, Yang J, Zhu FM (2008) Macromolecular aggregation of aqueous polyacrylic acid in the presence of surfactants revealed by resonance Rayleigh scattering. Macromolecules 41:4873

    Article  CAS  Google Scholar 

  77. Buschman HJ, Cleve E, Schollmeyer E (1992) Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg Chim Acta 193:93

    Article  Google Scholar 

  78. Siegal R, Firestone B (1988) pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21:3254

    Article  Google Scholar 

  79. Liu N, Yi M, Ahai M, Li J, Ha H (2001) Radiation synthesis and characterization of polyDMAEMA hydrogel. Radiat Phys Chem 61:69

    Article  CAS  Google Scholar 

  80. Chen YF, Yi M (2001) Swelling kinetics and stimuli-responsiveness of poly(DMAEMA) hydrogels prepared by UV-irradiation. Radiat Phys Chem 61:65

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 20674045), National Basic Research Program of China (973 Program, 2009CB930103), and Shandong Provincial Natural Science Foundation (ZR2011BM002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebang Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Ma, Q., Hu, L. et al. Synthesis and multi-stimuli-responsive behavior of copolymer of N,N′-dimethylacrylamide and complex pseudorotaxane. Polym. Bull. 69, 199–217 (2012). https://doi.org/10.1007/s00289-012-0731-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0731-0

Keywords

Navigation