Skip to main content
Log in

Preparation and characterization of a novel injectable in situ cross-linked hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel injectable in situ cross-linked hydrogel was prepared from α,β-poly(N-hydroxyethyl)-dl-aspartamide (PHEA), which had excellent biocompatibility and biodegradability. PHEA was modified by acryloyl chloride (AC) via the reaction between hydroxyl groups and acryl groups to introduce reactable double bonds into the chain. Two macromers with different degrees of derivatization were prepared. Through NMR and FT-IR characterizations, the structures of the polymers were proposed. Hydrogels were prepared by covalent cross-linking between double bonds with a transition from liquid to gel at body temperature. The effect factors on gelation time, swelling ratio and gel content were investigated in detail. It was found that the grafting ratios of AC, concentrations of macromer and initiator had great influence on the gelation time. And it could be adjusted to meet the requirements of an injectable material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guilherme Marcos R, Reis Adriano V, Takahashi Suélen H et al (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61:464–471

    Article  CAS  Google Scholar 

  2. Dai YN, Li P, Zhang JP et al (2008) Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Biomed Mater Res B Appl Biomater 86B:493–500

    Article  CAS  Google Scholar 

  3. Eljarrat-Binstock E, Bentolila A, Kumar N et al (2007) Preparation, characterization, and sterilization of hydrogel sponges for iontophoretic drug-delivery use. Polym Adv Technol 18:720–730

    Article  CAS  Google Scholar 

  4. Juntanon K, Niamlang S, Rujiravanit R et al (2008) Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel. Int J Pharm 356:1–11

    Article  CAS  Google Scholar 

  5. Al-Assaf S, Phillips Glyn O, Williams Peter A et al (2006) Controlling the molecular structure of food hydrocolloids. Food Hydrocolloids 20:369–377

    Article  CAS  Google Scholar 

  6. Zhao L, Mitomo H (2008) Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J Appl Polym Sci 110:1388–1395

    Article  CAS  Google Scholar 

  7. Paul TC, Freddie V, Carissa MS et al (2006) A galactose polyacrylate-based hydrogel scaffold for the detection of cholera toxin and staphylococcal enterotoxin B in a sandwich immunoassay format. Anal Chim Acta 578:2–10

    Article  CAS  Google Scholar 

  8. Villanueva I, Klement BJ, Deutsch DV et al (2008) Cross-linking density alters early metabolic activities in chondrocytes encapsulated in Poly(Ethylene Glycol) hydrogels and cultured in the rotating wall vessel. Biotechnol Bioeng. doi:10.1002/bit.22134

  9. Dalton PD, Flynn L, Shoichet MS (2002) Manufacture of poly (2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials 23:3843–3851

    Article  CAS  Google Scholar 

  10. Ankareddi I, Brazel CS (2007) Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Int J Pharm 336:241–247

    Article  CAS  Google Scholar 

  11. Kang GD, SHa Cheon, Khang G et al (2006) Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Eur J Pharm Biopharm 63:340–346

    Article  CAS  Google Scholar 

  12. Rapaport H, Grisaru H, Silberstein T (2008) Hydrogel scaffolds of amphiphilic and acidic β-sheet peptides. Adv Funct Mater 18:2889–2896

    Article  CAS  Google Scholar 

  13. Ji Y, Ghosh K, Li BQ et al (2006) Dual-syringe reactive electrospinning of cross-Linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol Biosci 6:811–817

    Article  CAS  Google Scholar 

  14. Mirzan TR, Darmawan D, Zainuddin et al (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

  15. Kiyohaya O, Masayuki I, Toshiaki I et al (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3437–3444

    Article  CAS  Google Scholar 

  16. Heymer A, Haddad D, Weber M et al (2008) Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials 29:1473–1483

    Article  CAS  Google Scholar 

  17. Kawamura S, Wakitani S, Kimura T et al (1998) Articular cartilage repair-Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand 69:56–62

    Article  CAS  Google Scholar 

  18. Chenite A, Chaput C, Wang D et al (2000) Novel injectable neutral solutions of chitosan from biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  CAS  Google Scholar 

  19. Payne RG, Yaszemski MJ, Yasko AW et al (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 23:4359–4371

    Article  CAS  Google Scholar 

  20. Ibusuki S, Fuji Y, Iwamoto Y et al (2003) Tissue-engineered cartilage using an injectable and in situ gelable thermoreponsive gelatin: fabrication and in vitro performance. Tissue Eng 9:371–384

    Article  CAS  Google Scholar 

  21. Timmer MD, Ambrose CG, Mikos AG (2003) In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials 24:571–577

    Article  CAS  Google Scholar 

  22. Behravesh E, Jo S, Zygourakis K et al (2002) Synthesis of in situ cross-linkable macroporous biodegradable poly(propylene fumarate-co-ethylene glycol) hydrogels. Biomacromolecules 3:374–381

    Article  CAS  Google Scholar 

  23. Rowley JA, Madlambayan G, Mooney DJ et al (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  Google Scholar 

  24. Davis KA, Burdick JA, Anseth KS (2003) Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials 24:2485–2495

    Article  CAS  Google Scholar 

  25. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457

    Article  CAS  Google Scholar 

  26. Cavallaro G, Pitarresi G, Licciardi M, Giammona G (2001) Polymeric prodrug for release of an antitumor agent by specific enzymes. Bioconjugate Chem 12:143–151

    Article  CAS  Google Scholar 

  27. Giammona G, Tomarchio V, Pitarresi G et al (1997) Glycidyl methacrylate derivatization of α,β-poly(N-hydroxymethyl)-dl-aspartamide and alpha, beta-polyasparthyhydrazide. Polymer 38:3315–3323

    Article  CAS  Google Scholar 

  28. Cavallaro G, Maniscalco L, Licciardi M (2004) Tamoxifenloaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies. Macromol Biosci 4:1028–1038

    Article  CAS  Google Scholar 

  29. Giammona G, Carlisi B, Palazzo S (1987) Reaction of α,β-poly(N-hydroxyethyl)-dl-aspartamide with derivatives of carboxylic acids. J Polym Sci Polym Chem 25:2813–2818

    Article  CAS  Google Scholar 

  30. Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069

    Article  CAS  Google Scholar 

  31. Gong CY, Shi S, Dong PW et al (2008) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm doi:10.1016/j.ijpharm.2008.08.027

  32. Giammona G, Puglisi G, Cavallaro G et al (1995) Chemical stability and bioavailability of acyclovir coupled to α,β-poly(N-2-hydroxyethyl)-dl-aspartamide. J Control Release 33:261–271

    Article  CAS  Google Scholar 

  33. Hong Y, Mao ZW, Wang HL et al (2006) Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. J Biomed Mater Res 79A:913–922

    Article  CAS  Google Scholar 

  34. Chen YM, Tanaka M, Gong JP et al (2007) Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials 28:1752–1760

    Article  CAS  Google Scholar 

  35. Kasper FK, Seidlits SK, Tang A et al (2005) In vitro release of plasmid DNA from oligo (poly(ethylene glycol) fumarate) hydrogels. J Control Release 104:521–539

    CAS  Google Scholar 

Download references

Acknowledgments

Contract grant sponsor: National Natural Science Foundation of China; contract grant number: 20636010, 20876011. Contract grant sponsor: National High Technology Research and Development Program of China; contract grant number: 2006AA02Z245

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Cao, H., Su, H. et al. Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym. Bull. 62, 699–711 (2009). https://doi.org/10.1007/s00289-009-0048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0048-9

Keywords

Navigation