Skip to main content
Log in

Impact of releasing period and magnitude on mosquito population in a sterile release model with delay

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Assuming that there are multiple batches of sterile males reared and released during the maturation period, we derive a switching delay differential model to study the fate of wild females under an impulsive and periodic release of sterile males. For the release magnitude of each batch c, we find two threshold values \(c_1^*\) and \(c_2^*\), and prove that when \(c\in (0, c_1^*]\), the model admits exactly two periodic solutions, among which one is asymptotically stable and the other is unstable. The trivial equilibrium, corresponding to the elimination of wild females, is locally asymptotically stable, and it becomes globally asymptotically stable when \(c\ge c_2^*\). One key step is to prove that every solution is sandwiched between two “good” solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • 2021. Health topics-Dengue and severe dengue [WWW Document], https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_1

  • Ai S, Li J, Yu J, Zheng B (2022) Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes. Dis. Cont. Dyn. System Series B 27(6):3039–3052

    Article  MathSciNet  Google Scholar 

  • Bacaer N (2011) A Short History of Mathematical Population Dynamics. Springer, London

    Book  Google Scholar 

  • Boyer S, Gilles J, Merancienne D, Lemperiere G, Fontenille D (2011) Sexual performance of male mosquito Aedes albopictus. Med Vet Entomol 25:454–459

    Article  Google Scholar 

  • Cai L, Ai S, Li J (2014) Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J Appl Math 74:1786–1809

    Article  MathSciNet  Google Scholar 

  • Cai L, Ai S, Fan G (2018) Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Math Biosci Eng 15:1181–1202

    Article  MathSciNet  Google Scholar 

  • Coutinho-Abreu IV, Zhu K, Ramalho-Ortigao M (2010) Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges. Parasitol Int 59(1):1–8

    Article  Google Scholar 

  • Duan J, Lin L, Cai S, Liu W, Yi J, Lu W, Yin W (2009) Study on the stepwise responses for risk categories for dengue fever vector. Chinese J. Vector Biol. Cont. 20(1):51–54

    Google Scholar 

  • Dyck VA, Hendrichs JP, Robinson AS (2005) Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management, New Agriculturist

  • Hirsch MW, Smale S, Devaney RL (2007) Differential Equations, Dynamical Systems, and An Introduction to Chaos. Academic Press, Cambridge, Massachusetts

    MATH  Google Scholar 

  • Huang C, Yang Z, Yi T, Zou X (2014) On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J Differential Equations 256(7):2101–2114

    Article  MathSciNet  Google Scholar 

  • Li J (2008) Differential equations models for interacting wild and transgenic mosquito populations. J Biol Dyn 2:241–258

    Article  MathSciNet  Google Scholar 

  • Li J, Ai S (2020) Impulsive releases of sterile mosquitoes and interactive dynamics with time delay. J Biol Dyn 14(1):289–307

    Article  MathSciNet  Google Scholar 

  • Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y et al (2014) Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis. 8(11):e3301

    Article  Google Scholar 

  • Li J, Han M, Yu J (2018) Simple paratransgenic mosquitoes models and their dynamics. Math Biosci 306:20–31

    Article  MathSciNet  Google Scholar 

  • Liu F, Yao C, Lin P, Zhou C (1992) Studies on life table of the natural population of Aedes albopictus. Acta Sci Natur Univ Sunyatseni 31:84–93

    Google Scholar 

  • Smith H (2011) An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York

    Book  Google Scholar 

  • Tang B, Xiao Y, Tang S, Wu J (2016) Modelling weekly vector control against Dengue in the Guangdong Province of China. J. Theoret. Biol. 410:65–76

    Article  Google Scholar 

  • Vinogradova E (2007) Diapause in aquatic insects, with emphasis on mosquitoes. In: Diapause in Aquatic Invertebrates Theory and Human Use, Vol., 112, Springer, Netherlands, 218-224

  • Wang Y, Liu X, Li C, Su T, Jin J, Guo Y et al (2017) A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China. J Econ Entomol 110:239–244

    Google Scholar 

  • Xi Z, Dean JL, Khoo CC (2005) Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol 35:903–910

    Article  Google Scholar 

  • Xi Z, Khoo CC, Dobson SL (2006) Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc. Royal Soc. B 273:1317–1322

    Article  Google Scholar 

  • Yu J (2018) Modelling mosquito population suppression based on delay differential equations. SIAM J Appl Math 78:3168–3187

    Article  MathSciNet  Google Scholar 

  • Yu J (2020) Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model. J Differential Equations 269:10395–10415

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2019) Dynamics of interactive wild and sterile mosquitoes with time delay. J Biol Dyn 13:606–620

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2020) Global asymptotic stability in an interactive wild and sterile mosquito model. J Differential Equations 269:6193–6215

    Article  MathSciNet  Google Scholar 

  • Yu J, Li J (2022) A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period. J Math Biol 84:14

    Article  MathSciNet  Google Scholar 

  • Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JRL (2015) Combining the sterile insect technique with the incompatible insect technique:I-Impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS ONE 10:e0121126

    Article  Google Scholar 

  • Zhang X, Liu Q, Zhu H (2020) Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control. J Math Biol 81:1–34

    Article  MathSciNet  Google Scholar 

  • Zheng B, Yu J (2019) Modeling Wolbachia infection in mosquito population via discrete dynamical models. J. Difference Equ. Appl. 25:1549–1567

    Article  MathSciNet  Google Scholar 

  • Zheng B, Yu J (2022) Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency. Adv Nonlinear Anal 11:212–224

    Article  MathSciNet  Google Scholar 

  • Zheng B, Tang M, Yu J (2014) Modeling Wolbachia spread in mosquitoes through delay differential equations. SIAM J Appl Math 74:743–770

    Article  MathSciNet  Google Scholar 

  • Zheng B, Yu J, Xi Z, Tang M (2018) The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression. Ecol Model 387:38–48

    Article  Google Scholar 

  • Zheng B, Liu X, Tang M, Xi Z, Yu J (2019) Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control. J. Theoret. Biol. 472:95–109

    Article  MathSciNet  Google Scholar 

  • Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, Liang Y, Pan X, Hu L, Sun Q, Wang X, Wei Y, Zhu J, Qian W, Yan Z, Parker AG, Giles JRL, Bourtzis K, Bouyer J, Tang M, Zheng B, Yu J, Liu J, Zhuang J, Hu Z, Zhang M, Gong J, Hong X, Zhang Z, Lin L, Liu Q, Hu Z, Wu Z, Baton LA, Hoffmann AA, Xi Z (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61

    Article  Google Scholar 

  • Zheng B, Yu J, Li J (2021) Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J Appl Math 81:718–740

    Article  MathSciNet  Google Scholar 

  • Zheng B, Li J, Yu J (2021) One discrete dynamical model on Wolbachia infection frequency in mosquito populations. Sci China Math. https://doi.org/10.1007/s11425-021-1891-7

    Article  Google Scholar 

  • Zheng B, Li J, Yu J (2022) Existence and stability of periodic solutions in a mosquito population suppression model with time delay. J Differential Equations 315:159–178

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zheng.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (11971127, 12071095).

Appendices

Appendices

Model derivation satisfying (1.5) and (1.6)

For the release strategy with (1.5) and (1.6), sterile males released at \(t_i=iT\), \(i=0, 1, \cdots \) can keep sexually competitive until \(iT+\overline{{T}}=(i+p)T+q\). Then for \(t\in [0, pT)\), we have

$$\begin{aligned} g(t)=ic, \ t\in [(i-1)T, iT), \ i=1, 2, \ldots , p. \end{aligned}$$
(A.1)

From the \(p+1\)-cycle, g(t) is a T-periodic function defined as

$$\begin{aligned} g(t)= pc, \ t\ge pT, \ \text {if}\ q=0, \end{aligned}$$
(A.2)

and

$$\begin{aligned} g(t) = {\left\{ \begin{array}{ll} (p + 1)c, &{} t \in [iT, iT + q),\\ p c, &{} t \in [iT + q, (i+1)T), \end{array}\right. }\quad \text{ if }\ \ q\ne 0, \end{aligned}$$
(A.3)

for \(i=p, p+1, \ldots \). (See Fig. 6 for illustration of g(t) when \(q\ne 0\).)

Fig. 6
figure 6

Schematic graph of the release function g(t) with \(\overline{{T}}=pT+q\) satisfying \(q\ne 0\)

It is obvious that \(g(t-\tau )\equiv 0\) for \(t\in [0, \tau )\). To determine \(g(t-\tau )\) for \(t\ge \tau \), we need to locate \(\tau \) relative to T and \(\overline{{T}}\). With \(\overline{{T}}\le \tau =mT\), we have three cases to consider when specifying \(g(t-\tau )\) as well as the corresponding model (1.2).

1.1 Model (1.2) with \(q=0\) and \(m=p\)

In this case, from (A.1) and (A.2), we have

$$\begin{aligned} g(t) = {\left\{ \begin{array}{ll} ic, &{} t \in [ (i-1)T, iT),\ i=1, 2, \ldots , p-1, \\ pc, &{} t\in [(p-1)T, \infty ). \end{array}\right. } \end{aligned}$$
(A.4)

Hence

$$\begin{aligned} g(t-\tau ) = {\left\{ \begin{array}{ll} 0, &{} t \in [0, pT),\\ ic, &{} t \in [(p+ i-1)T, (p+i)T),\ i=1, 2, \ldots , p-1, \\ pc, &{} t\in [(2p-1)T, \infty ). \end{array}\right. } \end{aligned}$$
(A.5)

During the first p cycles, \(g(t-\tau )\equiv 0\) and the wild mosquito population follows

$$\begin{aligned} \dfrac{dw}{dt}=a w(t-\tau ) - \left[ \mu + \xi (w(t)+ic)\right] w(t),\ t\in [ (i-1)T, iT), \ i=1, 2, \ldots , p, \end{aligned}$$

where \(a=a_0e^{-\mu _0\tau }\).

The first time point with \(g(t-\tau )\ne 0\) is \(t=pT\), and these sterile mosquitoes accumulate to \((p-1)c\) at \(t=2(p-1)T\). Therefore, when \(t \in [(p+ i-1)T, (p+i)T)\), we get

$$\begin{aligned} \dfrac{dw}{dt}=\dfrac{a w^2(t-\tau )}{w(t-\tau )+ic} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \ i=1, 2, \ldots , p-1. \end{aligned}$$

From \(t=(2p-1)T\) and thereafter, \(g(t-\tau )=g(t)\equiv pc\). Eventually, the dynamics of the wild mosquitoes then obey

$$\begin{aligned} \dfrac{dw}{dt}= \dfrac{a w^2(t-\tau )}{w(t-\tau )+pc} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \ t\ge (2p-1)T. \end{aligned}$$
(A.6)

1.2 Model (1.2) with \(q=0\) and \(m>p\)

In this case, we have

$$\begin{aligned} g(t-\tau ) = {\left\{ \begin{array}{ll} 0, &{} t \in [0, mT),\\ ic, &{} t \in [(m + i-1)T, (m+i)T),\ i=1, 2, \cdots , p-1, \\ pc, &{} t\in [(m+p-1)T, \infty ). \end{array}\right. } \end{aligned}$$
(A.7)

Together with (A.4), the model (1.2) becomes

$$\begin{aligned} \left\{ \begin{aligned} \dfrac{dw}{dt}=&a w(t-\tau ) - \left[ \mu + \xi (w(t)+ic)\right] , t\in [ (i-1)T, iT), \ i=1, 2, \ldots , p-1, \\ \dfrac{dw}{dt}=&a w(t-\tau ) - \left[ \mu + \xi (w(t)+pc)\right] , t\in [(i-1)T, iT), \ i=p, p+1, \ldots , m, \\ \dfrac{dw}{dt}=&\dfrac{a w^2(t-\tau )}{w(t-\tau )+ic} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \\&\qquad \qquad t \in [(i+m-1)T, (i+m)T), i=1, 2, \ldots , p-1,\\ \dfrac{dw}{dt}=&\dfrac{a w^2(t-\tau )}{w(t-\tau )+pc} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \ t\ge (m+p-1)T. \end{aligned} \right. \end{aligned}$$

The dynamics of the wild mosquitoes eventually follow

$$\begin{aligned} \dfrac{dw}{dt}= \dfrac{a w^2(t-\tau )}{w(t-\tau )+pc} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \ t\ge (m+p-1)T, \end{aligned}$$
(A.8)

by ignoring the first \(m+p-1\) cycles.

1.3 Model (1.2) with \(q\ne 0\) and \(m>p\)

From (A.1) and (A.3), we have

$$\begin{aligned} g(t-\tau ) ={\left\{ \begin{array}{ll} 0, &{} \ t \in [0, mT), \\ ic, &{} \ t \in [(i+m-1)T, (i+m)T),\ i=1, 2, \ldots , p, \\ (p+1)c, &{} \ t\in [(i+m)T, (i+m)T+q), \ i=p, p+1, \ldots , \\ pc, &{} \ t\in [ (i+m)T+q, (i+m+1)T),\ i=p, p+1, \ldots . \end{array}\right. } \end{aligned}$$
(A.9)

Since

$$\begin{aligned}{}[0, mT)=[0, pT)\cup \big (\cup _{k=p}^{m-1} [kT,kT+q)\cup [kT+q, (k+1)T)\big ), \end{aligned}$$

when \(t\in [0, mT)\), model (1.2) obeys the following three equations:

$$\begin{aligned} \left\{ \begin{aligned} \dfrac{dw}{dt}=&a w(t-\tau ) - \left[ \mu + \xi (w(t)+ic)\right] , t\in [(i-1)T, iT), \ i=1, 2, \ldots , p, \\ \dfrac{dw}{dt}=&a w(t-\tau ) - \left[ \mu + \xi (w(t)+(p+1)c)\right] , t\in [iT, iT+q), \ i=p, p+1, \ldots , m-1, \\ \dfrac{dw}{dt}=&a w(t-\tau ) - \left[ \mu + \xi (w(t)+pc)\right] w(t), t \in [iT+q, (i+1)T), \ i=p, p+1, \ldots , m-1. \end{aligned} \right. \end{aligned}$$

From \(t=mT\), the function \(g(t-\tau )\ne 0\). For \(t\in [mT, (m+p)T)\), from (A.3) and (A.9), model (1.2) switches between

$$\begin{aligned} \dfrac{dw}{dt}= \dfrac{a w^2(t-\tau )}{w(t-\tau )+ic} - \left[ \mu + \xi (w(t)+(p+1)c)\right] w(t), \ t\in [iT, iT+q), \end{aligned}$$

and

$$\begin{aligned} \dfrac{dw}{dt}=\dfrac{a w^2(t-\tau )}{w(t-\tau )+ic} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \ t\in [iT+q, (i+1)T), \end{aligned}$$

where \(i=m, m+1, \cdots , m+p-1\).

After running the first \(m+p\) cycles, (A.3) and (A.9) imply that model (1.2) follows the switching system consisting of two delay differential equations

$$\begin{aligned} \left\{ \begin{aligned} \dfrac{dw}{dt}=&\dfrac{a w^2(t-\tau )}{w(t-\tau )+(p+1)c} - \left[ \mu + \xi (w(t)+(p+1)c)\right] w(t), \ t\in [iT, iT+q), \\ \dfrac{dw}{dt}=&\dfrac{a w^2(t-\tau )}{w(t-\tau )+pc} - \left[ \mu + \xi (w(t)+pc)\right] w(t), \ t\in [ iT+q, (i+1)T), \ \end{aligned} \right. \end{aligned}$$

for \(i=p+m, p+m+1, \cdots \).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B. Impact of releasing period and magnitude on mosquito population in a sterile release model with delay. J. Math. Biol. 85, 18 (2022). https://doi.org/10.1007/s00285-022-01785-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-022-01785-5

Keywords

Mathematics Subject Classification

Navigation