Skip to main content
Log in

A homeostasis criterion for limit cycle systems based on infinitesimal shape response curves

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Homeostasis occurs in a control system when a quantity remains approximately constant as a parameter, representing an external perturbation, varies over some range. Golubitsky and Stewart (J Math Biol 74(1–2):387–407, 2017) developed a notion of infinitesimal homeostasis for equilibrium systems using singularity theory. Rhythmic physiological systems (breathing, locomotion, feeding) maintain homeostasis through control of large-amplitude limit cycles rather than equilibrium points. Here we take an initial step to study (infinitesimal) homeostasis for limit-cycle systems in terms of the average of a quantity taken around the limit cycle. We apply the “infinitesimal shape response curve” (iSRC) introduced by Wang et al. (SIAM J Appl Dyn Syst 82(7):1–43, 2021) to study infinitesimal homeostasis for limit-cycle systems in terms of the mean value of a quantity of interest, averaged around the limit cycle. Using the iSRC, which captures the linearized shape displacement of an oscillator upon a static perturbation, we provide a formula for the derivative of the averaged quantity with respect to the control parameter. Our expression allows one to identify homeostasis points for limit cycle systems in the averaging sense. We demonstrate in the Hodgkin–Huxley model and in a metabolic regulatory network model that the iSRC-based method provides an accurate representation of the sensitivity of averaged quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

Notes

  1. “all the vital mechanisms, however varied they may be, have only one object, that of preserving constant the conditions of life in the internal environment”—quoted in translation by Cannon (1929).

References

  • Ahn J, Hogan N (2012) A simple state-determined model reproduces entrainment and phase-locking of human walking. PloS one 7(11):e47963

    Article  Google Scholar 

  • Antoneli F, Golubitsky M, Stewart I (2018) Homeostasis in a feed forward loop gene regulatory motif. J Theor Biol 445:103–109

    Article  MathSciNet  Google Scholar 

  • Aoi S, Tsuchiya K (2005) Locomotion control of a biped robot using nonlinear oscillators. Auton Robot 19(3):219–232

    Article  Google Scholar 

  • Bernard C (1878) Leçons sur les phénomènes de la vie commune aux animaux et aux végétaux, vol 1. Baillière, Paris

    Google Scholar 

  • Brockett RW (2015) Finite dimensional linear systems. SIAM

  • Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 16(4):673–715

    Article  Google Scholar 

  • Bruce EN (1994) Nonlinear dynamics of respiratory reflexes. IFAC Proc Vol 27(1):497–500

    Article  Google Scholar 

  • Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9(3):399–431

    Article  Google Scholar 

  • Diekman CO, Thomas PJ, Wilson CG (2017) Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. J Neurophysiol 118(4):2194–2215

    Article  Google Scholar 

  • Duncan W, Best J, Golubitsky M, Nijhout HF, Reed M (2018) Homeostasis despite instability. Math Biosci 300:130–137

    Article  MathSciNet  Google Scholar 

  • Duncan W, Golubitsky M (2019) Coincidence of homeostasis and bifurcation in feedforward networks. Int J Bifurcation Chaos 29(13):1930037

    Article  MathSciNet  Google Scholar 

  • Eldridge FL, Paydarfar D, Wagner PG, Dowell RT (1989) Phase resetting of respiratory rhythm: effect of changing respiratory drive. Am J Physiol-Regulat Integrat Comp Physiol 257(2):R271–R277

    Article  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience, vol 35. Springer, Berlin

    Book  Google Scholar 

  • Geitz KAE, Richter DW, Gottschalk A (1995) The influence of chemical and mechanical feedback on ventilatory pattern in a model of the central respiratory pattern generator. In: Modeling and control of ventilation. Springer, pp 23–28

  • Golubitsky M, Stewart I (2017) Homeostasis, singularities, and networks. J Math Biol 74(1–2):387–407

    Article  MathSciNet  Google Scholar 

  • Golubitsky M, Stewart I (2018) Homeostasis with multiple inputs. SIAM J Appl Dyn Syst 17(2):1816–1832

    Article  MathSciNet  Google Scholar 

  • Golubitsky M, Wang Y (2020) Infinitesimal homeostasis in three-node input-output networks. J Math Biol 80(4):1163–1185

    Article  MathSciNet  Google Scholar 

  • Grodins FS, Gray JS, Schroeder KR, Norins AL (1954) Respiratory responses to co2 inhalation. a theoretical study of a nonlinear biological regulator. J Appl Physiol 7(3):283–308

    Article  Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348

    Article  MathSciNet  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Jordan DW, Smith P (2007) Nonlinear ordinary differential equations. Oxford University Press, 4 edition

  • Junge O, Schütze O, Froyland G, Ober-Blöbaum S, Padberg-Gehle K (2020) Advances in dynamics, optimization and computation: a volume dedicated to Michael Dellnitz on the occasion of his 60th birthday, volume 304. Springer Nature

  • Kenny RA, Bayliss J, Ingram A, Sutton R (1986) Head-up tilt: a useful test for investigating unexplained syncope. Lancet 327(8494):1352–1355

    Article  Google Scholar 

  • Kuo AD (2002) The relative roles of feedforward and feedback in the control of rhythmic movements. Mot Control 6(2):129–145

    Article  MathSciNet  Google Scholar 

  • Lyttle DN, Gill JP, Shaw KM, Thomas PJ, Chiel HJ (2017) Robustness, flexibility, and sensitivity in a multifunctional motor control model. Biol Cybern 111(1):25–47

    Article  MathSciNet  Google Scholar 

  • Molkov YI, Rubin JE, Rybak IA, Smith JC (2017) Computational models of the neural control of breathing. Wiley Interdiscip Rev: Syst Biol Med 9(2):e1371

    Google Scholar 

  • Molkov YI, Shevtsova NA, Park C, Ben-Tal A, Smith JC, Rubin JE, Rybak IA (2014) A closed-loop model of the respiratory system: focus on hypercapnia and active expiration. PloS one 9(10):e109894

    Article  Google Scholar 

  • Morrison PR (1946) Temperature regulation in three central American mammals. J Cellular Comparat Physiol 27(3):125–137

    Article  Google Scholar 

  • Nijhout HF, Best J, Reed M (2014) Escape from homeostasis. Math Biosci 257:104–110

    Article  MathSciNet  Google Scholar 

  • Nijhout HF, Best JA, Reed MC (2019) Systems biology of robustness and homeostatic mechanisms. Wiley Interdiscip Rev: Syst Biol Med 11(3):e1440

    Google Scholar 

  • Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, Novak V (2005) Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 99(4):1523–1537

    Article  Google Scholar 

  • Park Y, Shaw KM, Chiel HJ, Thomas PJ (2018) The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems. Eur J Appl Math 29(5):905–940

    Article  MathSciNet  Google Scholar 

  • Reed M, Best J, Golubitsky M, Stewart I, Nijhout HF (2017) Analysis of homeostatic mechanisms in biochemical networks. Bull Math Biol 79(9):2534–2557

    Article  MathSciNet  Google Scholar 

  • Rubin JE, Bacak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2011) Interacting oscillations in neural control of breathing: modeling and qualitative analysis. J Comput Neurosci 30(3):607–632

    Article  MathSciNet  Google Scholar 

  • Sammon M (1994) Geometry of respiratory phase switching. J Appl Physiol 77(5):2468–2480

    Article  Google Scholar 

  • Sammon M (1994) Symmetry, bifurcations, and chaos in a distributed respiratory control system. J Appl Physiol 77(5):2481–2495

    Article  Google Scholar 

  • Shaw KM, Lyttle DN, Gill JP, Cullins MJ, McManus JM, Hui L, Thomas PJ, Chiel HJ (2015) The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. J Computat Neurosci 38(1):25–51

    Article  MathSciNet  Google Scholar 

  • Shirasaka S, Kurebayashi W, Nakao H (2017) Phase reduction theory for hybrid nonlinear oscillators. Phys Rev E 95(1):012212

    Article  Google Scholar 

  • Snyder AC, Rubin JE (2015) Conditions for multi-functionality in a rhythm generating network inspired by turtle scratching. J Math Neurosci (JMN) 5(1):1–34

    Article  MathSciNet  Google Scholar 

  • Spardy LE, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, Rubin JE (2011) A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: Ii phase asymmetry. J Neural Eng 8(6):065004

    Article  Google Scholar 

  • Wang Y, Gill JP, Chiel HJ, Thomas PJ (2021) Shape versus timing: linear responses of a limit cycle with hard boundaries under instantaneous and static perturbation. SIAM J Appl Dyn Syst 20(2):701–744

    Article  MathSciNet  Google Scholar 

  • Wang Y, Huang Z, Antoneli F, Golubitsky M (2021) The structure of infinitesimal homeostasis in input–output networks. J Math Biol 82(7):1–43

    Article  MathSciNet  Google Scholar 

  • Wiggins S (1994) Normally hyperbolic invariant manifolds in dynamical systems. Number 105 in Applied Mathematical Sciences. Springer

  • Yoshiki K (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Google Scholar 

  • Yu Z, Thomas PJ (2021) Dynamical consequences of sensory feedback in a half-center oscillator coupled to a simple motor system. Biol Cybernet 115(2):135–160

Download references

Acknowledgements

PT thanks the Oberlin College Department of Mathematics for research support.

Funding

This work was supported in part by National Institutes of Health BRAIN Initiative Grant R01 NS118606, and NSF Grant DMS-2052109.

Author information

Authors and Affiliations

Authors

Contributions

ZY and PJT designed the study. ZY and PJT derived the results. ZY performed the simulations. ZY and PJT wrote the manuscript.

Corresponding author

Correspondence to Zhuojun Yu.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Code availability (software application or custom code)

Custom code written in Matlab is available at https://github.com/zhuojunyu-appliedmath/Homeostasis-iSRC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Hodgkin–Huxley equations

A Hodgkin–Huxley equations

In the Hodgkin–Huxley system (20), the activation/inactivation rate functions are

$$\begin{aligned} \alpha _n(V)&=0.01\frac{10-V}{\exp {(\frac{10-V}{10})}-1},&\beta _n(V)&=0.125\exp {\left( \frac{-V}{80}\right) },\\ \alpha _m(V)&=0.1\frac{25-V}{\exp {(\frac{25-V}{10})}-1},&\beta _m(V)&=4\exp {\left( \frac{-V}{18}\right) },\\ \alpha _h(V)&=0.07\exp {\left( \frac{-V}{20}\right) },&\beta _h(V)&=\frac{1}{\exp {(\frac{30-V}{10})}+1}. \end{aligned}$$

Parameter values for the system are listed in Table 1.

Table 1 Parameter values for HH system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Thomas, P.J. A homeostasis criterion for limit cycle systems based on infinitesimal shape response curves. J. Math. Biol. 84, 24 (2022). https://doi.org/10.1007/s00285-022-01724-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-022-01724-4

Keywords

Navigation