Skip to main content
Log in

Analytic solutions for stochastic hybrid models of gene regulatory networks

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Discrete-state stochastic models are a popular approach to describe the inherent stochasticity of gene expression in single cells. The analysis of such models is hindered by the fact that the underlying discrete state space is extremely large. Therefore hybrid models, in which protein counts are replaced by average protein concentrations, have become a popular alternative. The evolution of the corresponding probability density functions is given by a coupled system of hyperbolic PDEs. This system has Markovian nature but its hyperbolic structure makes it difficult to apply standard functional analytical methods. We are able to prove convergence towards the stationary solution and determine such equilibrium explicitly by combining abstract methods from the theory of positive operators and elementary ideas from potential analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A function is called strongly positive if it is positive outside a set of measure zero (Reed and Simon 1978).

References

  • Arendt W (2008) Positive semigroups of kernel operators. Positivity 12:25–44

    Article  MathSciNet  MATH  Google Scholar 

  • Bena I (2006) Dichotomous Markov noise: exact results for out-of-equilibrium systems. Int J Modern Phys B 20(20):2825–2888

    Article  MathSciNet  MATH  Google Scholar 

  • Benaïm M, Le Borgne S, Malrieu F, Zitt P-A (2012) Quantitative ergodicity for some switched dynamical systems. Electron Commun Probab 17(56):1–14

    MathSciNet  MATH  Google Scholar 

  • Benaïm M, Se Le Borgne, Malrieu F, Zitt P-A (2015) Qualitative properties of certain piecewise deterministic Markov processes. Ann Inst Henri Poincaré Probab Stat 51:1040–1075

    Article  MathSciNet  MATH  Google Scholar 

  • Bokes P, King JR, Wood ATA, Loose M (2013) Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression. Bull Math Biol 75(2):351–371

    Article  MathSciNet  MATH  Google Scholar 

  • Bokes P, Lin YT, Singh A (2018) High cooperativity in negative feedback can amplify noisy gene expression. Bull Math Biol 80(7):1871–1899

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Jia C (2020) Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks. J Math Biol 80(4):959–994

    Article  MathSciNet  MATH  Google Scholar 

  • Costa M (2016) A piecewise deterministic model for a prey-predator community. Ann Appl Probab 26:3491–3530

    Article  MathSciNet  MATH  Google Scholar 

  • Crudu A, Debussche A, Radulescu O (2009) Hybrid stochastic simplifications for multiscale gene networks. BMC Syst. Biol. 3(1):89

    Article  Google Scholar 

  • Davies EB (2005) Triviality of the peripheral point spectrum. J Evol Equ 5:407–415

    Article  MathSciNet  MATH  Google Scholar 

  • Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J R Stat Soc Ser B Stat Methodol 46(3):353–388

    MATH  Google Scholar 

  • Davis MHA (1993) Markov models and optimization, Monographs on statistics and applied probability, vol 49. Chapman and Hall, London

    Book  Google Scholar 

  • Engel K-J, Nagel R (2000) One-parameter semigroups for linear evolution equations, Graduate texts in mathematics, vol 194. Springer, New York

    MATH  Google Scholar 

  • Engel K-J, Nagel R (2006) A short course on operator semigroups. Universitext, Springer, Berlin

    MATH  Google Scholar 

  • Faggionato A, Gabrielli D, Ribezzi CM (2009) Non-equilibrium thermodynamics of piecewise deterministic Markov processes. J Stat Phys 137(2):259

    Article  MathSciNet  MATH  Google Scholar 

  • Friedmann N, Cai L, Sunney XX (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97(16):168302

    Article  Google Scholar 

  • Gerlach M, Glück J Convergence of positive operator semigroups. arxiv:1705.01587. https://www.ams.org/journals/tran/2019-372-09/S0002-9947-2019-07836-4/home.html

  • Gilbarg D, Trudinger N (2001) Elliptic partial differential equations of second order. Classics in mathematics, Springer, Berlin

    Book  MATH  Google Scholar 

  • Grima R, Schmidt DR, Newman TJ (2012) Steady-state fluctuations of a genetic feedback loop: an exact solution. J Chem Phys 137:035104

    Article  Google Scholar 

  • Hepp B, Gupta A, Khammash M (2015) Adaptive hybrid simulations for multiscale stochastic reaction networks. J Chem Phys 142(3):034118

    Article  Google Scholar 

  • Herajy M, Heiner M (2012) Hybrid representation and simulation of stiff biochemical networks. Nonlinear Anal Hybrid Syst 6(4):942–959

    Article  MathSciNet  MATH  Google Scholar 

  • Herbach U (2019) Stochastic gene expression with a multistate promoter: breaking down exact distributions. SIAM J Appl Math 79(3):1007–1029

    Article  MathSciNet  MATH  Google Scholar 

  • Hornos JEM, Schultz D, Innocentini GCP, Wang JAMW, Walczak AM, Onuchic JN, Wolynes PG (2005) Self-regulating gene: an exact solution. Phys Rev E 72(5):051907

    Article  MathSciNet  Google Scholar 

  • Horton G, Kulkarni VG, Nicol DM, Trivedi KS (1998) Fluid stochastic Petri nets: theory, applications, and solution techniques. Eur J Oper Res 105:184–201

    Article  MATH  Google Scholar 

  • Hufton PG, Ting LY, Galla T, McKane AJ (2016) Intrinsic noise in systems with switching environments. Phys Rev E 93(5):052119

    Article  Google Scholar 

  • Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction systems analytically. J Math Biol 54(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar N, Platini T, Kulkarni RV (2014) Exact distributions for stochastic gene expression models with bursting and feedback. Phys Rev Lett 113(26):268105

    Article  Google Scholar 

  • Kurasov P, Lück A, Mugnolo D, Wolf V (2018) Stochastic hybrid models of gene regulatory networks. Math Biosci 305:170–177

    Article  MathSciNet  MATH  Google Scholar 

  • Laurenzi IJ (2000) An analytical solution of the stochastic master equation for reversible bimolecular reaction kinetics. J Chem Phys 113(8):3315–3322

    Article  Google Scholar 

  • Lin YT, Buchler NE (2019) Exact and efficient hybrid Monte Carlo algorithm for accelerated Bayesian inference of gene expression models from snapshots of single-cell transcripts. J Chem Phys 151(2):024106

    Article  Google Scholar 

  • Lin YT, Doering CR (2016) Gene expression dynamics with stochastic bursts: construction and exact results for a coarse-grained model. Phys Rev E 93(2):022409

    Article  MathSciNet  Google Scholar 

  • Lin YT, Galla T (2016) Bursting noise in gene expression dynamics: linking microscopic and mesoscopic models. J R Soc Interface 13(114):20150772

    Article  Google Scholar 

  • Lin YT, Hufton PG, Lee EJ, Potoyan DA (2018) A stochastic and dynamical view of pluripotency in mouse embryonic stem cells. PLoS Comput Biol 14(2):e1006000

    Article  Google Scholar 

  • Lipshtat A, Loinger A, Balaban NQ, Biham O (2006) Genetic toggle switch without cooperative binding. Phys Rev Lett 96(18):188101

    Article  Google Scholar 

  • Liu P, Yuan Z, Wang H, Zhou T (2016) Decomposition and tunability of expression noise in the presence of coupled feedbacks. Chaos 26(4):043108

    Article  MathSciNet  MATH  Google Scholar 

  • Loinger A, Lipshtat A, Balaban NQ, Biham O (2007) Stochastic simulations of genetic switch systems. Phys Rev E 75(2):021904

    Article  Google Scholar 

  • Miȩkisz J, Szymańska P (2013) Gene expression in self-repressing system with multiple gene copies. Bull Math Biol 75:317–330

    Article  MathSciNet  MATH  Google Scholar 

  • Nagel R (ed) (1986) One-parameter semigroups of positive operators. Lect Notes Math, vol 1184. Springer, Berlin

  • Puchałka J, Kierzek AM (2004) Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys J 86:1357–1372

    Article  Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226

    Article  Google Scholar 

  • Reed M, Simon B (1978) Methods of modern mathematical physics–IV: analysis of operators. Academic Press, San Diego

    MATH  Google Scholar 

  • Schaefer HH (1974) Banach lattices and positive operators, Grundlehren der mathematischen Wissenschaften, vol 215. Springer, Berlin

    Book  Google Scholar 

  • Schnoerr D, Sanguinetti G, Grima R (2017) Approximation and inference methods for stochastic biochemical kinetics—a tutorial review. J Phys A Math Theor 50(9):093001

    Article  MathSciNet  MATH  Google Scholar 

  • Trivedi KS, Kulkarni VG (1993) FSPNS: fluid stochastic Petri nets. Application and theory of petri nets (14th international conference, Chicago, IL). Lect Notes Comp Sci. Springer, Berlin, pp 24–31

    Google Scholar 

  • Vandecan Y, Blossey R (2013) Self-regulatory gene: an exact solution for the gene gate model. Phys Rev E 87(4):042705

    Article  Google Scholar 

  • Visco P, Allen RJ, Evans MR (2008) Exact solution of a model DNA-inversion genetic switch with orientational control. Phys Rev Lett 101(11):118104

    Article  Google Scholar 

  • Zeiser S, Franz U, Liebscher V (2010) Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes. J Math Biol 60(2):207–246

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is the outcome of a collaboration between two mathematicians working on evolutionary equations (DM) and partial differential equations (PK) and a computer biologist (VW). It has partially been carried out at the ZiF (Center for Interdisciplinary Research) in Bielefeld in the framework of the Cooperation Group Discrete and continuous models in the theory of networks. The authors are indebted to the ZiF for financial support and hospitality. The work of PK was also partially supported by the Swedish Research Council (Grant D0497301). The work of DM was partially supported by the German Research Foundation (Grant 397230547). The work of VW was partially supported by the German Research Foundation (Grant 391984329). We warmly thank Jochen Glück (Ulm) for suggesting to us the proofs of Lemma 4.5 and Theorem 4.6 and for many helpful discussions. We also thank the anonymous referees for pointing us to relevant references. In particular, we have learned that some of our analytic formulae for stationary distributions have already been obtained in Faggionato et al. (2009), Zeiser et al. (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delio Mugnolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurasov, P., Mugnolo, D. & Wolf, V. Analytic solutions for stochastic hybrid models of gene regulatory networks. J. Math. Biol. 82, 9 (2021). https://doi.org/10.1007/s00285-021-01549-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01549-7

Keywords

Mathematics Subject Classification

Navigation