Skip to main content
Log in

Reconstruction of LGT networks from tri-LGT-nets

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Phylogenetic networks have gained attention from the scientific community due to the evidence of the existence of evolutionary events that cannot be represented using trees. A variant of phylogenetic networks, called LGT networks, models specifically lateral gene transfer events, which cannot be properly represented with generic phylogenetic networks. In this paper we treat the problem of the reconstruction of LGT networks from substructures induced by three leaves, which we call tri-LGT-nets. We first restrict ourselves to a class of LGT networks that are both mathematically treatable and biologically significant, called BAN-LGT networks. Then, we study the decomposition of such networks in subnetworks with three leaves and ask whether or not this decomposition determines the network. The answer to this question is negative, but if we further impose time-consistency (species involved in a later gene transfer must coexist) the answer is affirmative, up to some redundancy that can never be recovered but is fully characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baroni M, Semple C, Steel M (2005) A framework for representing reticulate evolution. Ann Comb 8(4):391–408

    Article  MathSciNet  MATH  Google Scholar 

  • Baroni M, Semple C, Steel M (2006) Hybrids in real time. Syst Biol 55(1):46–56

    Article  Google Scholar 

  • Cardona G, Llabrés M, Rosselló F, Valiente G (2009a) Metrics for phylogenetic networks i: generalizations of the robinson-foulds metric. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 6(1):46–61

    Article  Google Scholar 

  • Cardona G, Pons JC, Rosselló F (2015) A reconstruction problem for a class of phylogenetic networks with lateral gene transfers. Algorithms Mol Biol 10(1):28

    Article  Google Scholar 

  • Cardona G, Rossello F, Valiente G (2009b) Comparison of tree-child phylogenetic networks. IEEE/ACM Trans Comput Biol Bioinform 6(4):552–569

    Article  Google Scholar 

  • Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Nat Acad Sci 104(7):2043–2049

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies, vol 2. Sinauer Associates, Sunderland

    Google Scholar 

  • Francis AR, Steel M (2015) Which phylogenetic networks are merely trees with additional arcs? Syst Biol 64(5):768–777

    Article  Google Scholar 

  • Gambette P, Huber KT (2012) On encodings of phylogenetic networks of bounded level. J Math Biol 65(1):157–180

    Article  MathSciNet  MATH  Google Scholar 

  • Habib M, To T-H (2012) Constructing a minimum phylogenetic network from a dense triplet set. J Bioinform Comput Biol 10(05):1250013

    Article  Google Scholar 

  • Hao W, Golding G (2004) Patterns of bacterial gene movement. Mol Biol Evol 21(7):1294–1307

    Article  Google Scholar 

  • Hotopp JCD (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27(4):157–163

    Article  Google Scholar 

  • Huber KT, Moulton V (2013) Encoding and constructing 1-nested phylogenetic networks with trinets. Algorithmica 66(3):714–738

    Article  MathSciNet  MATH  Google Scholar 

  • Huber KT, van Iersel L, Kelk S, Suchecki R (2011) A practical algorithm for reconstructing level-1 phylogenetic networks. IEEE/ACM Trans Computat Biol Bioinform (TCBB) 8(3):635–649

    Article  Google Scholar 

  • Huber KT, van Iersel L, Moulton V, Scornavacca C, Wu T (2017) Reconstructing Phylogenetic level-1 networks from nondense binet and trinet sets. Algorithmica 77(1):173–200

    Article  MathSciNet  MATH  Google Scholar 

  • Huber KT, van Iersel L, Moulton V, Wu T (2015) How much information is needed to infer reticulate evolutionary histories? Syst Biol 64(1):102–111

    Article  Google Scholar 

  • Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts, algorithms and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huson DH, Scornavacca C (2011) A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol 3:23–35

    Article  Google Scholar 

  • Kelk S, van Iersel L, Lekic N, Linz S, Scornavacca C, Stougie L (2012) Cycle killer.. qu’est-ce que c’est? on the comparative approximability of hybridization number and directed feedback vertex set. SIAM J Discret Math 26(4):1635–1656

    Article  MathSciNet  MATH  Google Scholar 

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003

    Article  Google Scholar 

  • Martin WF (2011) Early evolution without a tree of life. Biol Direct 6:36

    Article  Google Scholar 

  • Moret BM, Nakhleh L, Warnow T, Linder CR, Tholse A, Padolina A, Sun J, Timme R (2004) Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Trans Computat Biol Bioinform (TCBB) 1(1):13–23

    Article  Google Scholar 

  • Morrison DA (2011) Introduction to phylogenetic networks. RJR Productions, Stamford

    Google Scholar 

  • Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31(2):376–386

    Article  Google Scholar 

  • Oldman J, Wu T, van Iersel L, Moulton V (2016) TriLoNet: piecing together small networks to reconstruct reticulate evolutionary histories. Mol Biol Evol 33(8):2151–2162

    Article  Google Scholar 

  • Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 29(3):170–175

    Article  Google Scholar 

  • Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H et al (2008) Speciation through sensory drive in cichlid fish. Nature 455(7213):620–626

    Article  Google Scholar 

  • Semple C, Steel MA (2003) Phylogenetics. Oxford University Press on Demand, Oxford

    MATH  Google Scholar 

  • van Iersel L, Kelk S (2011) Constructing the simplest possible phylogenetic network from triplets. Algorithmica (New York) 60(2):207–235

    MathSciNet  MATH  Google Scholar 

  • van Iersel L, Kelk S, Rupp R, Huson D (2010) Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12):i124–i131

    Article  Google Scholar 

  • van Iersel L, Moulton V (2014) Trinets encode tree-child and level-2 phylogenetic networks. J Math Biol 68(7):1707–1729

    MathSciNet  MATH  Google Scholar 

  • Willson S (2011) Regular networks can be uniquely constructed from their trees. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 8(3):785–796

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for many comments and suggestions that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Cardona.

Additional information

Partially supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund project DPI2015-67082-P (MINECO/FEDER).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona, G., Pons, J.C. Reconstruction of LGT networks from tri-LGT-nets. J. Math. Biol. 75, 1669–1692 (2017). https://doi.org/10.1007/s00285-017-1131-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1131-8

Keywords

Mathematics Subject Classification

Navigation